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LIST OF SYMBOLS

Symbols which are used only once in the text are not shown

below. Some symbols are used in more than one context, in which

case more than one definition appears next to that symbol.

A: Initial set-up costs

B: A forcing set

C: Sampling costs

D: Annual educational costs

DI : Costs of an educational sub-unit

E: Expected value

F: A cumulative density function

K: Population with the highest mean

M: Survival factor

N: The size of the total available sample

P: Probability; also, productivity

R: Discount factor

S: The sum of sample values

T: Nominal learning time for an educational sub-unit

U: The number of repetitions of an experiment

V: Present worth of educational costs

W: Present worth of expected life-cycle productive output

X: A sample value

a: Age at which one starts an educational unit

b: Retirement age

c: A proportionality or weighting factor relating a sub-unit

to the unit

d: A transform giving equivalent dollars for any given dates

f: A transform giving dollar values from productive output

g: Grades
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h: A transform relating current to previous grades

is (As a subscript) The identification tag for each of the

samples from the j-th population; otherwise identifies

an educational unit
The identification tag for a population

k: The total number of populations

2: Identifies an educational sub-unit

m: (Subscripted) The a priori sample mean; otherwise

signifies years of experience

n: The trial number or sample number in a sequence

of samples

p: Relative sampling cost; also, a transform giving projected

values from a history of previous values

q: Order of a polynomial

r: Discount rate

s: Sample standard deviation

t: Learning time

u: Identifies the particular repetition of an experiment

w: A transform relating grades to subsequent output

x: A random variable

y: Current date; also date student will complete educational unit

Date of starting productive output

z: A duminy variable

a: Personality factor

13: Factor describing history of past performance

IA: Population mean

IT: A population

a: Population standard deviation

T: Years from the date of starting a given educational unit

II: Product sign



Designates group taking a specific educational unit
* Designates a matched group not taking a specific

educational unit

$: Reported median earnings
Idealized learning time for a given educational unit

Designates the number of remaining observations
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SECTION I

INTRODUCTION

In recent years engineers have become increasingly involved in

the study of adaptive teaching systems. There are research groups in-

volved in such studies at the University of Illinois' Coordinated Science

Laboratory, at the Massachusetts Institute of Technology, in numerous

other schools, and in engineering firms throughout the world.

A brief analysis will be made here of the earlier work, and

some additional concepts on criteria functions, decision rules, and

utility functions for adaptive educational systems will be introduced.

In an educational context, the word "system" is used to describe

such diverse things as "The Blank County School System" and "Dash

Publishing Company' s Self-Instructional System for Slide-Rule Compu-

tations". For convenience in exposition "systems" will be roughly

divided into four categories.

Micro-micro systems: concerned with a transformation

of students' behavior by a single, relatively short

sequence of lea.: .ling items.
Micro systems: concerned with a transformation of

students' behavior by a longer sequence of learning

items, such as are encountered in a semester course.

Mac.'o systems: a collection of micro systems characterized

by a curriculum or curricula in a school, university or

school district.
Macro-macro_systems: related to the transformation

of students' behavior by the total learning experience

encountered during the students' lives.

Almost all of the previous studies on adaptive decision struc-

tures have been concerned with micro-micro systems. Criteria
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functions have not been explicitly stated, and therefore the decision

rules have generally been non-optimal. Also, the transformations

achieved by the system have been measured in abstract units (such as

grades) which are left unrelated to value scales or "utility" outside of

the system, thus precluding external evaluation of the system. The

adaptive decision structure suggested in the following sections is com-

pletely general and is intended for systems of all sizes. However,
since a utility function for the output of educational systems will be

introduced, and since data for this utility function are most readily

available for macro or macro-macro systems, the approach will be to

start with the larger systems and work down to the micro-micro systems.

Adaptive decisions have always existed in educational systems.

Course content and pedagogical techniques have changed in response to

changes in the social, cultural, economic and technological aspects of

the environment. However, the rules governing such change have

seldom been explicitly recognized or stated, and the information needed

for making decisions has often been incomplete. An adaptive decision

structure is one which removes much of the decision-making function

from the intuitive realm by providing a plan for accumulating relevant

data and using these data according to a preconceived plan or decision

rule to change or rearrange sub-elements of the system in order to

achieve a predetermined criterion in some optimal fashion. Further-

more, this criterion should have some "utility" outside of the system.

An adaptive decision structure therefore requires:

1. Data gathering and handling capability.

2. A criterion function.
3. Decision rules.
4. A utility function.

Only brief consideration will be given to the first of these re-

quirements. The assumption will be made here that the amount of data



that is ideally required for an adaptive decision structure is sufficiently

voluminous to require the use of modern data-processing equipment.

Whether or not this data-processing equipment is also used for present-

ing course content material directly to students (as in the computer-

controlled "teaching machines") is a side issue to the main stream of

thought. Questions of this type can be readily resolved by the techniques

developed in the following sections. Another assumption that will per-

vade all of the subsequent discussion is that flexible scheduling (for

individual students, at any time during the school year) is a desirable

feature of an educational system using an adaptive decision structure.

The merit of this assumption will become clearer when the utility func-

tion is described. The practical i iplementation of flexible scheduling

will undoubtedly be enhanced by the use of data-processing equipment.

The main contributions of the following sections will be in the

area of criteria functions, decision rules, and utility functions for

adaptive decision structures, and can be summarized as:

a. The description of a criterion function for an adaptive decision

structure in an educational system where two processes are

being carried out simultaneously, namely, (a) students are

learning subject matter, and (b) the system controllers are

learning about the student' s learning. Process (b) may include

exploratory use of various alternative pedagogical procedures

or subject matter, some of which may result in better student

performance than others. In such a situation there is a trade-

off between processes (a) and (b). The suggested criterion func-

tion is the sum of the net utility of all students' outputs, and
obviously this function should be maximized.

b. The description of decision rules which tend to maximize the

criterion function under different conditions of a priori inform-

ation. In particular, some qualitative rules are obtained for

3



4

the case of "total a priori ignorance", i.e., where there is no

a priori information on the distribution of the net utility of

students' outputs. Also, an extension is made to the procedure

for two-stage sequential sampling from two normally distributed

populations to include the case where the costs of taking or

observing sample date is of some consequence. Of most interest

is the development here of a computational backwards-induction

solution for the multi-stage or continuous sampling procedure

from k normal populations. This solution is applicable to

problems outside the educational context and should be of interest

in such fields as medical testing, agricultural experiments,

production line evaluation and in many other fields where the

criterion is to maximize the sum of net outputs. The proce-

dure used can be generalized to binomial and other distributions.

c. The description of a utility function for converting such available

measures as student grades, student learning time, teacher

inputs, school capital and maintenance costs, etc. into a net

value of the transformation effected by the system. Current

measures of student output are used to derive a present worth of

the student's expected life-cycle productive output ( PWSELCPO)

and these are compared with PWSELCPO for alternate system

configurations.

In order to assign a value to the net output from an educational

system one not only needs a utility function but also data to feed into

such a function. Many of the necessary data are currently nonexistent

or otherwise unavailable. Therefore, some rather strong restrictions

must be imposed on the utility function so that it can operate with

reduced precision with existing data. The important point to note at this

stage is that in at least one case there is probably enough information

available to start using an adaptive decision structure which includes a

utility function. That case is in the field of engineering education,
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where most data exist relating students' performance in school to sub-

sequent life-cycle productive outputs. A start must be made some-

where; otherwise there is little prospect that the additional data

required for a more precise utility function will ever be accumulated.

It may seem like a boot-strap operation to prescribe such a structure

from incomplete information, but an adaptive decision structure is

dedicated to making decisions in the face of uncertainty or incomplete

information. Adaptive decision theorists suggest policy iteration [1]

as a means of sequentially approaching the desired end.



SECTION II

BACKGROUND

A. The Three Approaches

In the last few years, many people have talked about the

possibility of applying some of the tools of modern technology to the

teaching-learning process. However, the "tools" that are proposed dif-

fer with the professional background of the proponents. For example,

the psychologist is usually most interested in the learning theory

a_moach, in which stimulus-response concepts are selectively applied

to the micro-micro aspects of the educational process. Many experi-

menters and theorists have contributed to this approach (Thorndike,

Hull, Skinner, Estes, etc. ). Some of the most commonly quoted con-

cepts in this approach are:

1. Principle of reinforcement: Certain environmental effects

strengthen the behavior which has produced these effects

(a correct response to a question, properly rewarded, will
increase the probability that the correct response will be

subsequently elicited on meeting the same or similar

question).
2. Principle of gradual progression: Use a series of progressive

approximations so as to lead, finally, to the required complex

behavior. By giving reinforcement for each of the responses

in the series making up the complex pattern, the desired

behavior is gradually shaped.
3. Immediacy of reinforcement: Probability of future correct

responses is inversely proportional to the time lapse between

a response and its reinforcement. Furthermore opportunity

for frequent responding and reinforcement helps maintain

learner' s interest and attention.

6



Some of these psychologically prescribed techniques may sound very
similar to procedures which are currently used by many experienced
instructors, and indeed they are. However, there may be a difference
of degree. For example, Skinner breaks the learning sequence into
extremely small steps -- generally short sentences -- and he has
indicated that the only way economically to arrange the optimum con-
ditions of reinforcement, immediacy, precision and frequency of
response is in a teaching machine. There are problems with the learn-
ing theory approach:

a. The early theories are relatively simple and ignore many of
the variables which affect human learning. Partly because
of this, experimental attempts to confirm the theories with
human subjects have not been spectacularly successful.
More complex multivariable formulations have been slow in

coming.

b. The reinforcement (the feedback of the "systems" approach)
has been largely limited to the learner, and only haphazardly
applied to the instructor, with the result that systematic
improvements in instructional material or presentation
methods are scarce.

Another approach, often proposed by engineers, is the systems
approach in which people (as students and as teachers) are major com-
ponents in the system. Generally, this approach emphasizes the
"control" advantage of feedback to the student, to the instructor, and
to the system evaluator (faculty or society). Feedback control system
analogies are loosely used with emphasis on inputs, outputs, transform
means, and system constraints. This approach has the following

problems:

1. Educational "system" goals are difficult to express in
operational terms.



2. Outputs are difficult to evaluate.
3. The function of time, a necessary element of most feedback

control systems, has an ambiguous role in education.

Fundamental contributions from this approach will be limited until the

above problems are resolved.

The third approach is the data-handling approach, which is rela-

tively unconcerned with any specific learning theory or method for

evaluating the educational system outputs. The proponents of this

approach claim that with any given sub-set of teaching-learning pro-

cedures and with any given measure of output the use of modern data-

handling and logic devices would permit much more extensive sampling

of pertinent data and use of discriminative decision-making and that

improvements in the teaching-learning process can be greatly accel-

erated, largely on an experiential basis.

None of the above approaches is completely independent of the

others. Some balanced blend of the three will probably emerge. All

approaches emphasize individual learning and the accumulation of know-

ledge about the teaching-learning process. All point toward increased

mechanization of the bookkeeping chores (grading, record keeping,

scheduling); and at least the latter two approaches point toward mech-

anization and possibly automation of the presentation of learning exper-

iences to the student.

An early study at UCLA [2], and many subsequent experiments,

indicated that certain kinds of mechanization are ill-advised, primarily

because use of the mechanism does not yield "better" student learning

than use of less expensive non-mechanized procedures, and some mech-

anized devices actually hamper student learning. Nevertheless, it is

recognized that just to record and manipulate the multitude of contingent

circumstances which affect the teaching-learning process, an efficient

data-handling and logic device would be required. The modern digital

8
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computer and ancillary equipment have the desired capability, and it is

therefore interesting to examine how some people have used the com-

puter in teaching systems.

B. Computers in Teaching Systems

It will be noted that most of the computer-based teaching

systems described below are micro-micro systems, concerned with

small sequences of learning items. Historically, the impetus for the

development of computer-based educational systems came from people

primarily imbued with the learning theory approach, even though these

people were often engineers or mathematicians working for companies

dedicated to systems analyses or to computer design. Interest in the

use of computers for larger (macro) systems has received later and

less comprehensive consideration, and almost nothing has been done on

input-output analyses for computer-based macro-macro systems.

While the primary concern here is not with micro-micro systems

(the so-called "teaching machines"), a review of the work on these

micro-micro systems is revealing, because some fundamental

problems arise in these smaller systems which are typical of all

educational systems, regardless of size.

In 1958, Gustave Roth, Nancy Anderson and R. C. Brainerd of

the IBM Research Center, following a suggestion from Dr. William J.

McGill of Columbia University, used an IBM 650 computer to simulate

a teaching machine. The group was primarily interested in the general

characteristics of teaching machines and felt that it would be easier and

perhaps less expensive to simulate different kinds of teaching machines

with an available computer than to actually construct a number of differ-

ent kinds of teaching machines. This was the first of a series of

investigations in which it was suggested that the computer was valuable

for educational research purposes but uneconomical as a regular

training device.
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Counting, addition, subtraction, multiplication and division in

binary arithmetic were taught to individual students via a typewriter

input-output station. The machine verifies the student' s inputs digit

by digit and signals him only when he makes a mistake. The computer

program allows for individual differences in skill level and rate of

learning. If a student is making no errors, he is given an option to

skip 2, 1, or no problems.

When the student makes an error, the choice of the next prob-

lem depends on the number of errors the student has made on that

section of the binary arithmetic course. If the student made fewer

than 5 errors, the computer presents a problem at the same difficulty

level as the last problem he completed correctly. If he makes more

than 5 errors, he is presented a problem similar in difficulty to one

of the first problems in that section of the coursc . Therefore, branch-

ing forward is at the student' s option, and branching backward is based

on some a priori decision written into the computer program.

Work by the group was discontinued in 1959, but in 1961 a new

group under William Uttal resumed work on computer-based teaching.

Encouraged by Professor Merrill Flood of the University of Michigan,

the group believed that they could demonstrate the economic feasibility

of computer-based teaching systems by providing multiplex student input-

output stations per computer. Currently, the group is using a traolis-

torized IBM 1410, a multiplexer, four input-output buffers, a card punch

and reader, one psychomotor skill station (for teaching stenotyping),

six typewriter stations (for teaching statistics and German), a real time

clock, and an ABM 355 digital disc storage unit with an IBM 652 control

unit which provides a random access audio memory (used for the steno-

type and German language training).

Some spectacular results have been obtained by Uttal' s group.

For example, in the statistics course a group of six students completed
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half the semester' s work in an average of 5.3 hours with an average
mid-term examination grade of 94.3%, whereas a group of eight
matched students,. taking a lecture course at a university from the
same instructor who wrote the program for the computer-administered
course, required 24 hours of class lectures plus an average of 25

hours homework to get an average grade of 58.4%.

In correspondence and conversations with Dr. Uttal, he admits

that the control programs are arrived at largely on an intuitive basis

and require a good deal of cut and try modifications. No attempt is

made at optimizing the structure of the programs by experimentation.

The computer is not being used to calculate anything, but rather is

being used as a data throughput and comparison system.

At Bolt, Beranek and Newman, Inc., J. C. R. Licklider,

J. A. Sweats, and associates have been using a Digital Equipment

Corporation PDP-1 computer which can use either a typewriter or a

cathode tube and light pen as an input-output station. Some of the

early work by this group in teaching sound discrimination to sonar

operators was unsuccessful, possibly because an a priori decision

was made to use branching techniques for student acquisition of rela-

tively meaningless non-verbal sounds which actually had very little

sequential relationship. Licklider and Sweats' application of human

engineering techniques is perhaps more important than their applica-

tions of learning theory to computer aided teaching. By careful

consideration of the man-machine interface, they were able to reduce

learning time by at least 50%. Of further interest are their attempts
to teach relations between the symbolic and the graphical representa-
tion of mathematical functions by having the student explore the effect

of changing the coefficients of an equation and watching the resultant

change of the graphical representation on the oscilloscope screen.
By careful attention to the multiplexing problem and by use of a special



purpose computer, the team at Bolt, Beranek and Newman, Inc. has

succeeded in bringing tie cost of computer, ancillary eqipment, and
overhead down to $1.50 per student-hour, and anticipate that these
costs could be further reduced to less than a dollar per student-hour,
which is well within the range of current teaching costs.

At the Coordinated Science Laboratory of the University of

Illinois, engineers D. L. Bitzer, P. G. Braunfeld, and W. W.
Lichtenberger have used the old ILLIAC computer in conjunction with

two alpha-numeric student input stations, course material stored on
an electronically scanned set of slides, and two TV tube output stations.

The computer program is cleverly conceived to allow for individual
student differences. The program provides the student with an
opportunity to determine the branching procedure by giving him the
option to call for "help" sequences or to transfer out of a "help"

sequence at any point in the sequence. The student can also use the
computer for computational work to help speed solutions to problems

in which computational skill is not the primary objective of the lesson.

At the System Development Corporation, John Coulson and
Harry Silberman initially used a Bendix G-15 computer, random
access slide projector and buffering system, a typewriter input

station and opaque screen output station. This was a single station

system, but more recently SDC has been using a Philco 2000 computer
with a twenty-station multiplexed system. The student station contains .

multiple choice buttons for student inputs and a numbered read-out
window which guides the student to numbered items in a programmed

text.

The new SDC installation is also the first to try to go beyond
the micro-micro approach, in that consideration is given to using the
computer as a data-handling device which would provide diagnostic



information on student performance to the teacher-counselor and to

the instructor-program writer and would provide scheduling and

"systems evaluation" to the school administrator.

All of the computer-based systems mentioned above place con-

siderable emphasis on flexibility in selecting items of instruction to

present to the student. Different items can be presented to each

student depending on his history of responses to previous items. How-

ever, there is a major flaw in all of the above-mentioned procedures.

A fixed set of rules as set down in the computer programs controls

the teaching-learning process. These rules are usually intuitively

determined and their effectiveness is seldom verified by systematic

experimentation. Almost all of the people mentioned above relate how

much time they spend changing elements of their computer control

programs procedures for evaluating and modifying the a priori

elements of these programs. This is somewhat surprising, since

most of these experimenters agree that feedback on student progress

could be used for on-line alteration of the curriculum sequence or

pedagogical procedures, and would probably have more important

long-range cultural significance than the simple feedback (knowledge

of results fed back to the student) currently in use.

One of the earliest proponents of a variable, rather than a

fixed, decision process in a teaching system was Gordon Pask of

Systems Research, Ltd. His earlier work on "self-organizing"

systems led to his propounding [3] the idea of a self-organizing

teacher, (automaton) whose first problem is to find a language common

to both itself and the student so that the two can "talk" to eac% other.

To establish such conversational interaction, the automaton must be

capable of theorizing and model building, and by trying different

strategies (arising from different "theories") to eventually build a

model which relates the automaton to the student in a satisfactory,

13
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manner. Then it can effectively communicate new concepts to the

student. Pask suggests that such an adaptive teaching machine can

be designed in complete ignorance of how students learn. Essentially,
the automaton pragmatically discovers how students learn by trying

to get students to perform specified tasks.

Pask fails to mention two important criteria in his description

of the self-organizing teacher. He does not hint at what would con-

stitute an optimum procedure for trying different strategies, nor does

he specify the criterion for determining what constitutes a satisfactory

relationship between automaton and student.

The machines which Pask' s associates have actually built are

very cleverly designed training devices, but they do not incorporate

the self-organizing concepts suggested above. Rather, they are

adaptive at the same level as the computer-controlled devices men-

tioned on earlier pages; i.e. , they adjust the difficulty level of the

instructional material to the performance level of the individual stu-

dent. One of the earliest adaptive devices developed by Pask' s group

was for radar operator training, [4] but the best known device is the

Solartron Automatic Keyboard Instructor (SAKI) for training operators

of keypunch machines. "SAKI" demonstrates that, at least for special

purpose teaching, situations, certain decision functions can be per-

formed by compact electronic devices far less complex than the

digital computers employed by other research groups.

A student using "SAKI" views an exercise line consisting of

alpha-numeric characters which are illuminated one at a time, each

for a different length of time. Simultaneously, the student attempts

to replicate the characters by depressing the keys on a key-punch

machine. A separately illuminated display of the keyboard layout

indicates to the student the correct key to depress at the same time



that a particular exercise character is being illuminated. This help-
ful information may be withheld, either completely or partially. If

completely withheld, the keyboard layout display lamps are not
illuminated; if partially withheld, these lamps are illuminated after
a delay period, i.e. , some milliseconds after the exercise character
has been illuminated.

Unfortunately, the published article [5] which describes the
mathematical model of "SAKI" has a number of errors and ambigui-
ties which make a meaningful description of the internal mechanisms
of the device impossible. These errors are discussed in Appendix A.

One encounters similar inconsistencies in later papers by
Pask. However, of more serious consequence is Paskl s use of a
probability decision process in his adaptive systems. Every time (t)
that a teaching routine must be selected from a set of available
routines, a calculation is made for each teaching routine of the

(
probability, P.

3
t ) , that the j-th routine will yield good results. The

(
)

3'
probability, P.

3
t , is based on the history of pay-offs, p. obtained

from prior use of the j -th teaching routine. The probability of the

(
selection of a particular routine is proportional to the P.

3
t ) . This is

in essence a Monte Carlo sampling mechanism, and it can be demon-

strated to P, as t-00,
3

the average system pay-off will asymptotically approach

t5i)

An obviously better procedure than that suggested by Pask would be

one where the average system pay off asymptotically approached the

supremum of the means of the p.. Such a procedure will be discussed

in Section III.
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Most recently (July, 1962) the M. I. T. Press published a book,

A Decision Structure for Teaching Machines, based on the Ph. D.

dissertation of Richard D. Smallwood [6] (Electrical Engineering

Department, M. I. T. ). Before outlining his decision structure,

Smallwood makes some rather strong assumptions.

1. It is possible to specify a matrix of blocks of instructional

info.rmation, where rows represent the logical sequence of

concepts and columns represent alternate forms of informa-

tion within each row.
2. The probability that a student will respond correctly to a

given block is equal to the fraction of students who have

previously responded correctly on that block, regardless

of the previous histories of learning experiences of the

students.
3. Even though a "logical" ordering of blocks must exist, the

probability of responding correctly on a block is considered

to be independent of the sequence of blocks which were

previously seen by the student and independent of his score

in those blocks.

Smallwood makes other assumptions about the validity of

certain theories of learning (reinforcement, self- pacing,, small item

size, etc. ) which are not really essential for the development of his

decision structure and only serve to limit the applicability of that

decision structure.

The object of the decision process is to select which one of

the instructional blocks from the matrix of possible blocks of inform-

ation to present next to a given student.

The decision process has as its criterion: maximize the

individual student' s expected score until this score is above a

16
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(arbitrarily) specified minimum level; thereafter minimize the stu-
dent' s expected time to finish the course. The decision as to which
block of information a student would be shown next was made as
follows:

1. Toss a coin. If "heads", assign student to block for which
the average score of previous students' responses was
highest (or time was lowest, depending on which part of
the compound criterion is governing the process at that
instant).

2. If coin toss comes out "tails", assign student to block which
has been given to previous students the least number of times.

Smallwood also suggests an alternate decision process, namely,
that confidence intervals on the parameters determining the average
score for each block be estimated, and when "too great a difference
in the confidence intervals" for the different blocks exists, that the
block with the largest confidence interval on the average score be
selected.

Neither of the decision processes given above actually meets
the stated criterion. The arbitrary choice of coin tossing to determine
when to use the "maximizing" rule and when to use the "information
gathering rule" is obviously non-optimal. Also, choosing the block
with the largest confidence interval ignores the fact that this block
may also have one of the smaller average scores. Thus, in both
schemes, the process may choose blocks which result in sub-
maximum scores with unnecessary frequency.

Furthermore, there is a contradiction between the criterion
and the reasons given for using the particular decision processes. If
the criterion is to maximize a specific individual student' s expected
score, then one should always assign this student to the block which
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has the highest average score of previous students' responses (this is

similar to the decision process recommended by Bradt, Johnson &

Karlin [7] for the two-armed bandit problem where there is but one

play remaining). The implication one draws from the use of a

"forced" choice (a non-maximizing choice) is that information gained

from such "forced" choices will be of use in selecting the expected

maximum block for later students. Therefore, the decision process

does not adhere to the stated criterion of maximizing a particular

student' s expected score but rather implies that the criterion is to

maximize the sum of all students' scores, i.e., maximize

Sn 1 2
= X + X + +n NX ... + X

This point will be the key to the next section.



SECTION III

CRITERION AND DECISION RULES
FOR AN ADAPTIVE SYSTEM

A. Criterion Function

Some confusion in discussions on adaptive systems could

possibly be avoided if everyone took pains to describe the level or
levels of adaptive behavior involved in each system. All of the

devices described in the preceding section are called "adaptive

devices" by their creators, but the level of adaptivity is not the same

in all cases. For educational systems (regardless of size) the follow-

ing levels of adaptive behavior are defined:

Zero Level Adaptive Behavior: A fixed, preconceived strategy (or

pedagogy) is used for presenting to all students a fixed, preconceived

set of courses or list of subject matter.
First Level Adaptive Behavior: A fixed strategy which uses an
individual student' s past history of performance to determine which

particular course or list of subject matter from a preconceived set

of such courses or subject matter is shown to that individual student.

Second Level Adaptive Behavior: The particular courses or list of

subject matter which is shown to a particular student is determined

by a fixed strategy which uses an individual student' s past history of

performance and the history of performance of all students who have

previously gone through the system.
Third Level Adaptive Behavior: A set of strategies for presenting

students with courses or lists of subject matter is available. The
choice of a particular strategy for a particular student depends on

the history of performance for each of the strategies.
(Separation of strategies and courses or lists of subject

matter is a verbal convenience. Lists of subject matter

19
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could just as readily be considered sub-sets of strategies, in

which case the ideogram is simplified. This also eliminates

the distinction between second and third level adaptive

behavior. Hereafter, use of the word "strategy" will imply

both the pedagogical technique and the subject matter

employed by the pedagogical technique. )

The zero and first level adaptive systems do not include pro-

visions for data gathering or experimentation within the system.

These systems are non-optimizing and their success is largely

dependent on the subjective choice of the strategy.

With the exception of Smallwood' s system, all of the computer-

controlled micro-micro systems described in Section II fall into the

zero or first level of adaptive behavior, even though it can be shown

that elaborate data processing equipment need be used for such

systems [8], [9].

Systems with higher levels of adaptive behavior must include

provisions for storing information on students' performance and for

experimenting, i. e., trying different strategies. In such systems

students are simultaneously learners and "experimental subjects",

and the traditional experimental approach of ignoring the effects on

students who have been exposed to sub-optimal regimens should not

be tolerated. It is this consideration which leads to the choice of the

criterion: Maximize Sn, the sum of all students' net output. This

criterion becomes increasingly important where changes in strategy

(pedagogical techniques and/or subject matter) occur relatively fre-

quently, so that the total number of students who could possibly be

exposed to a given set of strategies is relatively small. Conversely,

this criterion is needed for systems in which frequent change

(hopefully towards the "better") is a desirable feature.
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For second or higher level adaptive systems, the criterion

stated above is equally applicable to micro-micro, micro, macro,

and macro -macro systems. There.:ore, in exploring the possible

decision rules or procedures which could meet the stated criterion,

the problem will be treated in a general way and no mention will be

made of the size of the system. Later, when considering the problem

of collecting data for systems which use the stated criterion, the size

of the system will again be of some consequence, and systems of

different size will have to be treated separately.

B. Sequential Decision Rules

For the general situation (independent of system' s size) let

X. be a collection of random variables defined on a probability
n
space a. nXij may be thought of as the random quantity that repre-

sents the n-th drawing in a sequence of drawings from a set of popu-

lations, 7T 7T , 7T. ' 7Tk where the subscript "1" indicates
2'

the i-th drawing from the j-th population. The populations are

specified )pecifiedby their cumulative distribution functions, F. x . It is
(

assumed that these functions of the random variables have expecta-

tions or means,

3).4.=
-00

xdF.c° .( x

In the application to an educational system, the set of populations

could represent different pedagogical procedures or different sequences

of learning items, such as the blocks used by Smallwood. The random

variable is considered, in some mysterious way, to represent the net

return attributable to bringing together the n-th student and the j-th

experience. Later, in Sections IV and V, an attempt will be made to

unravel the mystery of how one finds X from such measurable

descriptions as student learning time, teacher' s time, student test
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scores, system capital costs, etc. It should suffice here to hint that

X is likely to be a complicated functional of functions of random

variables and that due consideration will have to be given to the

stability of any decision process proposed for use in a real educational

system; i.e., the decision process should preferably be one which

guarantees that the error in the answer is no worse than the errors in

the initial data, and conversely, one should not expect the solutions to

have an error magnitude less than the errors in the initial data.

One more clarification is necessary at this point. The n stu-

dents represent a set from a population of students. It is assumed

that there is an isomorphic mapping from the set of the n available

students to each of the population distributions and that each trans-

formation is independent (though not necessarily dissimilar) from the

others. Note that the "mapping" is from students to measures on the

students, and the measures include all information on prior states of

the students. That is, the X represents net returns or, if you will,

a utility of the increase in performance ability as a result of being

exposed to a particular educational experience (the transform).

Before considering adaptive decision 'procedures for maxi-

mizing Sn, some boundaries must be placed on the problem. Adaptive

decision procedures will only be considered for the case where one

desires to maximize Sn for an a priori set of possible strategies. In

this scheme, non-contender strategies (i.e., those strategies with

little chance of being selected as the "best" strategy) can be eliminated

prior to the termination of the process, but new strategies can only be

introduced for consideration before the process begins. Whenever a

new contender comes to light, the problem is terminated and a new

problem initiated. The same adaptive decision procedure may be

used for the first and second problems, though it is more likely that
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a different decision p:ocedure would be used for each, since more

a priori information would be available for the second than for the

first problem.

Herbert Robbins [10] in 1952 first focused attention on the

problem of how to draw a sample 1X, 2X, ... nX from two populations

if the object is to achieve the greatest possible expected value of the

sum Sn 1
= X + 2X + + nX.

Robbins indicated that this problem

fits into the general context of sequential design of experiments, in

which the size and composition of samples are not fixed in advance

but are themselves functions of the observations, and as such, was

the outgrowth of earlier work by Dodge and Romig [11] in double sam-

pling inspection methods, and Wald' s [12] theory of sequential design.

The available a priori information plays a most important

role in the selection of a decision procedure, and some a priori

knowledge conditions will be outlined below.

First, there is the "maximum ignorance" case, where there

is no a priori knowledge of the distributions of the
3'

the relative

magnitude of the
1.43

. nor of the total number of students (max n = N)

available prior to the termination of the process. Sub-classifications

of this case occur for n-000, and when "nature" can call a halt to the

process at any n. Variations of this case occur for the process

terminating at: N, a known constant; at N, given a known probability

distribution on N; at & (n).

Secondly, a priori knowledge may exist on the distributions

of the X3. The distributions may be binomial, gaussian, etc. It is

conceivable that for a given problem some of the X. will have one
3

distribution and others of the X. will have another distribution. The
3

same sub-classifications given for the "maximum ignorance" case

hold here too, namely; n-000, N = unknown constant, N = known constant,



and stopping at &(n). Further sub - classification can be made for

existence or non-existence of a priori estimates of the population

parameters. In all of the above cases, the sampling proceos could

be continuous until the end of the process, or, where the cost of

making observations on samples is of consequence, the sampling

could terminate before the end of the process. Some of the possible

cases, separated according to the classifications given above, are

shown in Figure 1. Those cases which will be discussed in more

detail below are also indicated in Figure 1.

Case I A i. For the case of maximum ignorance, where the only

thing known is that the distributions in Y have finite means, no

decision rule can be specified which will ensure that the sum of the

net values of the observations Sn will be a maximum. However, if it

is known that for each distribution there exists a second (or higher

order) moment which is uniformly bounded, then C. L. Mallows and

Herbert Robbins [13] suggest a decision rule which maximizes Sn in

the sense:

or

P him
n-Ko

Sn

n
= /A K

= 1

E(Si)
lim = /.1

11.- C3 n K

where ;AK is the mean of the population with the highest mean.

The recommended decision rule entails the following:

a. Specify a sequence B1, B2, ... Bi ... of disjoint monotonic

sequences of integers, with B. = Bjh; h = 1, 2, ..

bj1 < bj ... j = 1, 28 . . . k

b
11

= 1
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where

and

B. n B.* = qh; j# j* (i.e. , the intersection of two sequences
is the empty set)

B.

(b.
32 3

- b.
1 3

) < (b.
3 3

- b.
2
) <

to which we add that, for convenience,

bjl
= j

b. If n c B, use decision D1:
select the n-th observation

from the j-th category.
c. If n %1B, use decision Do: select the n-th observation

from the category which had the highest sample mean at the

(n -1)th trial.

An observation selected according to Do is called free, and one

selected according to Di is called forced.

Forced observations, made according to a predetermined

sequence of inspection epochs, are required for the proof of

SnP lim = p =1
n 11,

and also satisfy the intuitive notion that some such procedure should

be used to reduce the small but finite probability that the selection

process becomes "trapped" in a category which does not have the

maximum mean. This possibility of being "trapped" is readily

illustrated in the following simple example:

1;
= 0

1X11 < 0; 2X12 ?0
(selecting one observation from each category)

26



that the n-th observation be made from the category which had the

maximum sample mean at the (n -1)th trial.

The expected value of Sn before any observations are taken is:

N-k k
E = + 0.4.) p.)

3 1 -1 no j=1 n= j-

where the first sum on the right-hand side of the equation is the

expected value of the first k observations -- one from each category --
and the second sum represents values from a branching tree, where

at each junction point on the tree there exists a probability (nP.) that

one of the k categories will be selected. With no knowledge about

the distributions, the nPj cannot be estimated, and neither analytical
nor computational solution exists for this case. However, a simu-
lation study of some possible decision rules is revealing.

Although one of the conditions initially imposed on the decision

rule for this case is that it should be usable for any set of populations
for which the cumulative distribution functions have finite expectations,
and there exist second (or higher) order absolute moments which are
uniformly bounded, sets of k normally distributed populations having
equal variances and equal contrasts between the means were selected
for convenience in the simulation. (The computational work was done

on the University of California IBM 7090, IBM 1401 and IBM 1620

computers. )

Since the current study is a part of an old and continuing
search for an appropriate framework for adaptive educational systems,
the decision rules suggested by earlier experimenters were included
in the simulation study. Admittedly, some of these rules could,
under certain conditions, be eliminated from consideration by
analytical methods. However, these rules were examined for three

28



Then at n = 3, j = 2, and since

E(X2) =122 = 0> iXii

it is possible that using Do no further observations will be made from

the j = 1 category which has the larger mean.

It was the concern over the possibility of "trapping", or as he

put it: "the dangers ... that the decision process may eliminate some

of the alternatives from consideration because of lack of data on the

consequence of the alternatives", that led Smallwood to use the coin-

tossing analog to select forced and free decision rules. The drawback

of Smallwood' s forcing rule is that no matter how much information is

Raccumulated,onthe categories whose sample means R.< K' the

frequency of selecting from these j categories remains unchanged.

Robbins' B. is completely arbitrary, within the limits defined

above for B3,B.
J

and for n-000 one set of B. is just as good as another.

However, the case of n-00 is not of particular interest within the con-

text of the type of evolving adaptive educational system that has been

suggested earlier.

Case I B. No unique solution exists for this case.

Case I C i. For the case of a finite N, convergence with, probability

one cannot be demonstrated every time the problem is run as in

Case I A i. The best that can be expected of a decision rule for

finite N is that the expected value of Sn is maximum in some sense,

i.e.,
E(SNau)

lim ;AK
u-Ko Nu

where u is the number of times the problem is repeated, in which

case there is an intuitive appeal to the decision rule which requires

27
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reasons: 1) the rules could possibly be used under conditions where

they could not readily be eliminated by analytical methods; 2) even

where analytical methods could theoretically be used, the analytical

methods may be more cumbersome than the empirical methods;

3) some insight was desired on the magnitude of the difference result-

ing from using the different decision rules, including the admittedly

inferior rules. The possibility existed that a "good" rule might be so

much more difficult to implement in the real world as not to justify

its use, particularly if the "inferior" rule yielded results not too

much below those of the "good" rule.

The following sampling decision rules were tested:

RULE 1. For n k select one observation from each of the k cate-

gories. For n > k select the n-th observation from that

category which had the highest sample mean at n - 1.

RULE 2. For n k select one observation from each of the k cate-

gories. For n > k flip an unbiased coin. If "heads", select

the n-th observation from that category which had the highest

sample mean at n - 1. If "tails", select the n-th observation

from the category from which the least number of observations

has been made

RULE 3. For n k select one observation from each of the k cate-

gories. For n > k flip an unbiased coin. If "heads", select

the n-th observation from that category which had the highest

sample meal.' at n 1. If "tails", select the n-th observation

from the category which had the highest product of the sample

mean and the sample standard deviation at n - 1.

RULE 4. For n 5 k select one observation from each of the k cate-

gories. For n > k select the n-th observation from the
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category which had the highest product of the sample mean and

the sample standard deviation (s) at n 1.

RULE 5. For n k select one observation from each of the k cate-

gories. For n > k select the n-th observation such that the

probability that the n-th observation will come from the j-th

category is:

(n-ircj) (n-is)

n-131j) (n-18)

RULE 6. For n 5 k select one observation from each of the k cate-

gories. For n > k select the n-th observation such that the

probability that the n-th observation will come from the j-th

category is:

P =
3 k

L-13-C3)
3=1

n-1X'

RULE 7. For n k select one observation from each of the k cate-

gories. For n > k if n B3,B.
3

select the n-th observation from

category j. If n B, select the n-th observation from the

category which had the highest sample mean at n - 1.

Rule 2 is Smallwood' s decision rule. Rule 4 is derived from

an untested suggestion by Smallwood. Rule 3 is a mixture of Rules 2

and 4. Rule 6 is Pask' s decision Rule. Rule 5 is a mixture of

Smallwood' s Rule 4 and Pask' s Rule 6. Rule 7 is Robbins' decision-

rule. Rule 1 is a simplification of Robbins' rule; i.e., it is the case

where the set B is the empty set.

Another rule:

4,
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RULE 8. For n s k select one observation from each of the k cate-

gories. For n > k modify the forcing set B according to sub-

rule Z; then if n E B.
3°

select the n-th observation from

category j. If n fe/B, select the n-th observation from the

category which had the highest sample mean at n - 1.

Rule 8 was not tested because "sub-rule Z" could not be

specified at this point in the investigations. It was hoped, however,

that the simulation study would shed some light on possible sub-rules.

For Rule 7, the following arbitrary forcing set B was specified:

Category Set B, k = 4 Set B, k = 6 Set B, k = 8

A 9 36 9 36 9 36

B 11 44 10 40 10 40

C 14 53 11 44 11 44

D 18 63 14 48 12 48

E 17 53 14 50

F 18 63 15 53

G 17 58

At each of the u repetitions of the problem, the numbers in

each column were randomly scrambled. For example, for the second

iteration of the problem with k = 4, the forcing set was:

Category Set B

A 11 53

B 9 63

C 14 44

D 18 36

The integers in each column of Set B were selected so that no

matter what combination of integers randomly appeared in the first

and second columns, adherence would be made to the restriction that:



(b3. - b.
3

) <
3

(b. - b.
3

) ;
2 1 3 2

bjl = j

A preliminary set of simulations was made to demonstrate how

each rule behaved in individual iterations of the problem. An example

is shown in Table 1, where Rule 1 was used with k = 4, 1.4K = 85, a =10,

and contrast of 10. In the first run, "trappinit, occurred in 773. In

the second run, all observations after the first k are taken from the

category which has In In the third run, some switching between 713

and 774 occurs before all subsequent observations are taken from the

category which has /AK. The results of these preliminary simulations

should be borne in mind during all the subsequent discussions, which

will deal exclusively with averages or expectations over many repeti-

tions of the same problem.
S

The "Expected Values" of Li were obtained from 500 iterations

Snof the same problem. These E (--) were obtained for values of N

from 1 to 100 -- a = 10, 20, 30; k = 4, 6, 8; contrasts of 5 and 10 --

and are summarized in Table 2. Also shown for each combination of
ST,

N, k and contrast is the maximum expected --=n , i.e., the value that

would be obtained if the first k selections yielded numbers equal to

12 la 12 2s . . a and the subsequent (N - k) selections all yielded

numbers equal to i2K.

Examination of Table 2 reveals that Rules 1 and 7 (derived

from Robbins) yield consistently better results than Rule 2 (Smallwood)

and Rule 6 (Pask), and also better results than the "mixed" Rules 3,

4, and 5. For reasons that are fairly obvious, the results of Rule 3

should approach the results of Rule 1, and the results of Rule 5 should

approach the results of Rule 6. Rule 6 yields results which approach

32
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n

TABLE I

SIMULATION OF RULE I

k = 4; ;AK = 85; a = 10; contrasts = 10

nx3

S
n
n

µi =55 m
2
=65

3
=75 124 =85 5

n
Tc

1 r 5 2 n
t
3 n

Run 1: 1 1 48.5
2 2 51.6

3 3 84.8

4 4 69.8
5 3 68.1
6 3 78.3
7 3 64.0

8 3 66.5

9 3 74.1

10 3 66.9

11 3 80.7

12 3 66.0
13 3 69.8

14 3 88.6
15 3 A.7

48.5 48.5

50.1
61.7
63.7
64.6
66.9
66.5
66.5

67.3
67.3
68.5
68.3
68.4
69.7
69.8 48.5

51.6

51.6

MM

84.8
84.8
76.5

77.1
73.8
72.4
72.6

71.8
72.9
71.9
73.3
73.0
72.4

- - -
=Is wwIMBIOlt

69.8

69.8

Run 2: 1 1 68.2
2 2 66.7

3 3 78.4
4 4 97.9
5 4 92.0
6 4 85.5
7 4 87.5
8 4 99.3

9 4 72.6
10 4 90.3
11 4 78.1
12 4 77.6
13 4 77.3
14 4 80.7
15 4 77.7

68.2
67.4
71.1
77.8
80.6
81.4
82.3
84.4
83.1
83.8
83,3
82.8
82.4
82.3
82.0

68.2 .1=

66.7

68.2 66.7

M
78.4

97.9
95.0
91.8
90.7

92.4
89.1

89.3
87.9
86.7

85.8
85.3

78.4 84.7

Run 3: 1 1 59.1

2 2 51.8
3 3 82.2
4 4 79.0
5 3 76.6
6 3 70.2
7 4 89.7
8 4 77.8
9 4 87.9

10 4 64.4

11 4 78.0
12 4 98.1

13 4 85.7

14 4 73.0
15 4 81.9

59.1

55.5
64.4
68.0
69.7
69.8
72.7
73.3
74.9
73.9
74.2
76.2
77.0
76.7
77.0

59.1

59.1

51.8

51.8

IMO WO MM. WES

82.2
82.2
79.4
76.3

76.3

79.0
79.0
79.0
84.4

82.2
83.6
79.8
79.5
82.1

82.6
81.5

81.6
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2

E(Pi)
the theoretical value . It is plainly useless to continue

E Cµ j)
considering the rules suggested by Smallwood and Pask for their

adaptive systems.

Focusing attention on Rules 1 and 7, it is observed that in the

case of small contrasts and large a, there is a relatively high proba-

bility that Rule 1 selects from sub-maximum categories in the early

trials; therefore, Rule 7 shows up better than Rule 1. Where con-

trasts are large and a is small, Rule 1 picks fewer sub-maximum

categories than the number "forced" by Rule 7. This suggests that

the smaller the contrasts, and the larger the a, the more dense

set B should be.

Also, as the number of categories, k, increases, Rule 7

yields lower results, since the number of "forced" selections in-

creases directly as k increases, while the likelihood of finding the

category with the maximum mean by the use of "forced" selection

decreases with an increase in k.

Case I C ii. If the cost of taking observations, C, and the initial

set-up cost for a category, A, are considered, the expected value of

Sn before any obs. .,tions are taken is

where

k N-k k
E ON) E p. + E E (A.) Cp.) - n. C. - E A.

o j=1 3 n=1 j=1 3 j=1 3 j=1

k

j=1
n. =N

If optimal stopping is permitted, say, at the n* trial, where

k < n*< N, and the remaining N - k - n* observations are taken

from the category with the highest sample mean
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k n* k

o 3=1 3 n=1 j=1 3

k k

j=1 j=1 3

where
k

= n*
j=1

k

n
p3) + (N-k-n )

1

(14;) (n*3P.)j=

which is unsolvable for the same reasons as given in Case I C i.
Again, these questions were explored by a computer simulation of the

use of the various rules on specified normal "test", populations. Three
sampling costs were considered: no cost (whDre obviously one should

never stop taking observations); a cost of one percent of the I.4K for all

Ir. and a cost of ten percent of 1.4K. Four values of N were selected:
38

N = n* (the sequential selection process stops and no students remain

to assign to the category with the largest sample mean); N = 100;
N = 1, 000; and N = 10, 000. Instead of having to compare each line of

E

\Sn

n )values with its maximum E (--) as was the case in Table 2,

the results of the first k observations were excluded from the summa-
tions (though not from the decision-making procedure) shown in
Tables 3 and 4, with the result that the single standard of comparison
is 1.4K = 85. The expectation is now E , taken over fiveN-k
hundred iterations.

A preliminary examination of Rules 2, 3, 4, 5, and 6 under
the above conditions again showed that these rules yield lower results

than do Rules 1 and 7. Rule 1, of course, is the same as Rule 7 with
the set B as the empty set. The set B used in Rule 7 for computing
the expected values of Table 2 can be considered a moderately dense

set and was used again for the computations of Tables 3 and 4.
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TABLE 4

EXPECTED VALUES WITH OPTIMAL STOPPING

N = 1, 000

a= 10 cr = 30

Coat 2 01 pK Coat = . 1 pic Coat = . 01 ;AK Cost .1 p

E M F E M F E M F E M F

81.7 81.6 81.5 81.7 81.6 81.5 79.6 78.8 78.9 79.6 78.8 78.9

82.8 82.5 82.4 82.7 82.5 82.3 80.3 80.0 79.5 80.2 79.9 79.5

83.1 83.3 83.0 83.0 83.2 82.9 80.6 80.4 80.0 80.5 80.4 79.9

83.3 83.9 83.6 83.2 83.7 83.5 80.9 81.0 80.4 80.8 80.8 80.3

83.5 84.1 84.2 83.1 83.8 83.8 81.2 81.5 81.3 80.9 81.2 80.9

83.5 84.3 84.2 83.0 83.8 83.7 81.2 81.8 82.0 80.7 81.3 81.5

83.6 84.3 84.1 82.8 83.6 83.4 81.4 82.1 82.1 80.6 81.4 81.3

81.5 80.8 80.7 81.5 80.7 80.7 75.0 74.9 73.9 75.0 74.9 73.9

82.6 82.1 81.8 82.5 82.0 81.8 76.5 75.3 75.7 76.5 75.3 75.7

83.2 83.8 82.6 83.1 83.4 82.5 79.4 78.1 77.6 79.3 78.0 77.5

83.4 83.9 83.3 83.1 83.6 83.0 80.2 80.0 79.0 79.9 79.7 78.7

83.4 84.1 83.1 82.9 83.6 82.6 80.8 81.1 80.0 80.3 80.6 79.5

83.4 84.1 82.8 82.7 83.4 82.1 80.8 81.3 80.1 80.1 80.6 79.4

82.5 81.9 82.1 82.5 81.9 82.1 75.6 75.9 75.9 75.6 75.9 75.9

83.7 83.7 83.4 83.7 83.7 83.4 77.7 78.7 77.9 77.6 78.6 77.8

83.9 84.3 83.9 83.8 84.2 83.8 79.0 80.2 78.9 78.9 80.1 '0.8

84.1 84.5 84.3 83.9 84.3 84.1 79.6 81.0 80.2 79.4 80.8 80.0

84.2 84.6 84.3 83.8 84.3 83.9 80.2 82.0 81.3 79.8 81.6 80.9

84.2 84.6 83.9 83.6 84.1 83.4 80.3 82.3 81.9 79.7 81.8 81.4

84.2 84.6 83.5 83.4 83.9 02.8 80.4 82.3 82.2 79.7 81.6 81.5

82.8 81.7 82.1 82.8 81.7 82.1 73.1 72.0 72.1 73.0 71.9 72.1

83.7 82.6 82.7 83.6 82.F 82.7 77.7 74.8 75.1 77.6 74.8 75.1

83.9 84.0 83.1 83.8 83.9 83.0 79.6 78.8 76.3 79.5 78.7 76.2

84.0 84.3 83.1 83.7 83.9 82.8 80.4 80.9 78.8 80.1 80.5 78.8

84.0 84.2 82.4 83.4 83.7 81.9 80.7 81.7 79.7 80.2 81.2 79.2

84.0 84.2 81.1 83.2 83.5 81.0 80.7 81.8 79.4 80.0 81.1 78.7
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A "full set" B is one with each integer present, resulting in all

observations being taken according to D1, the "forcing" decision.

Such a full set does not meet the restriction that

(bi2 -bbl < (bi3 - bi2

but does present a convenient opposite to the other extreme case of

an empty set. Also, use of such a full set is almost akin to those
classical sequential sampling techniques which select one observation

from each category prior to each decision step.

The general conclusion from this simulation is that both the

density of set B and the optimum stopping point n* are primarily
ciapendent on the total number of students available, N, and less
dependent on the size of k, a, contrasts, and sampling costs (where

these are moderate percentages of /AK). This conclusion can be

inferred more readily from some graphs than from Tables 3 and 4;
and Figures 2, 3 and 4 illustrate results for the typical case of k = 4,

a = 10, and contrast = 10. From these figures it appears that the
larger the N, the more dense should set B be, and the longer should

one keep on sampling. If, however, N is determined by some
decision process outside of the system -- i.e. , the experiment may
be terminated at any n = NH -- then Figure 5 shows that the empty

set B is best.

The question now arises: for Case I, if one starts with Rule 7
and an a priori forcing set B.

3
is it possible to modify this set as one

gains information on the Ir.? Since the forcing set is introduced to

reduce the probability of being "trapped" in the wrong category,
sample values are useless in determining what this set B. should be,
unless one wishes to make additional assumptions about the distribu-

tions ve the same

distribution, only differing by the value of a parameter, say the
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means,
/23

.. With this assumption, a point could be reached where

sample values from the category with max n. could be used to estimate

the nature of the distributions. At this point, however, instead of

changing set B. it would probably be advisable to shift the problem to

Case II, Case III, or other cases appropriate to the underlying

distributions of the

Actually, it is hardly conceivable that Case I conditions could

exist in any real educational system. Some Case II situations exist,

but the preponderance of situations falls into Case III. Anticipating the

results of later sections, it can be stated with a fair degree of cer-

tainty that the X' s that will be used for the adaptive decision structure

will be approximately normally distributed. Why then consider Case I?

The reason is that the decision rules used for Case I require relatively

little computational work (or hardware), whereas Case III decision

rules may require a tour de force in computation and analytical tech-

niques or hardware that does not currently exist. It is partly for this

reason that the empirical studies in Case I were made in normal

distributions, for if decision rules derived for the non-parametric

case yield results not too inferior to those obtained from the more

difficult Case III decision rules, then there could be some practical

advantages to using the simpler rules.

Only brief mention will be made of the Case II problems,

since in complexity they fall between Case I and Case III, and tech-

niques developed for Case III can be used with some simplification

for Case II.

Case II j3. R. N. Bradt, S. M. Johnson, and S. Karlin [7] considered

the special case of devising a sequential design which would maximize

the expected value of the sum of n observations from two binomially

distributed populations when the expected values of the distributions



are known, though only an a priori probability is given to indicate

which expected value is associated with which distribution. This

special case was popularly called the "Two-Armed Bandit Problem"

from its similarity to a familiar gambling situation.

R. Bellman [14] and M. Sakaguchi [15] couched the same

special case in dynamic programming terminology.

Walter Vogel [16] considered the same special case and further

examined this problem with the additional restriction that k observa-

tions are initially made on each of the two populations before the

sequential sampling rule is employed [17].

Finally, Dorian Feldman [18] showed that for both a specified

number, N, of observations and for an infinite number of observations,

the optimum (in the expected value sense) decision rule is to always

select the n-th observation from that category for which the Bayesian

posterior probability at n - 1 is greatest.

Case III a C. Several approaches are available in the case where the

7T. are assumed to be normally distributed and differing only in the

(unknown) value of
1.4J

.. One approach, often suggested, will be

excluded from consideration at the outset. This is the two-action

sequential approach of determining which of k categories has the high-

est mean and then assigning all remaining observations to that

category. Bechhofer [19], Paulson [20], Fabian [21] and Dunnett [22]

have made interesting contributions to this problem. In this approach,

the problem of the trade-off between information gained from taking

observations from categories with sample means less than max X.
n

and the loss in expected return from taking such observations is

handled by requiring the experimenter to state before the process

begins values of 6* and P*, where 6* is the smallest difference

K K-1 that.is worth detecting, and P* is the smallest acceptable

45



value of the probability of selecting mica when actually plc 6**

The difficulty with this approach is that when one wishes to maximize

Sn, then 6* and p* are functions of the unknown P
. and cannot be

3

specified 143
Furthermore,

this approach requires taking observations from each category at each

trial n < n*, an obviously non-optimal procedure.

There is another two-action sequential approach which also

requires taking observations from each category at each trial n < n*

but which does not require a priori statements on 6* or P*.

Case III a 4 C ii. For Xij normally distributed with equal known

variances, let n* be redefined as the number of trials, where each

trial consists in taking one observation from each of the k populations;

then ignoring set up and sampling costs the expected loss when making
k

n* trials is n* E 6., where 6. = p - If the sampling process
j=1

K 3

stops at n* and the expected loss from to ing the remaining (N-kn*)

observations from a r. rK
is (N-kn*) 6. (n 3

*P.), the total

expected loss is:
J -1

k k
(E(L)= n* 6. + N-1m*) 6 ( *P.)

j=1 j=1 3 n 3

Maurice [23] considers the case where k = 2 and

E(L) = n* 6 + (N - 2 n*) 6 ( n*Pj K) j

and draws on Girschick' s [24] earlier work indicating that sets of

sample values X11,, X12, , X1n and X21, X22, . X2n yielding

sample means XI and 512 can be identified with two population means

jAa and µb as:
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gs(21;12a)gr(312;1Ab)x

& (511;1Ab)g (Rea)

X

exp [- n (3111213)2
I ---7. lexP

= exp n2
a (311 -.72 )1

6

exp
[n (5-C1 1'2a)2- --a. exp

where 37. Pl .)
1 j

[

NG.
= exp -

a

5.c

n( 2 1.`b
2 17--7 In

-5c-

a

= exp
2

[---f-µa2

.

[
n
2 a

a

1 a
.._!...j.1)(X. 2 ]

(R1-3c2)(12a-pb)]

The sequential rule in this case is to continue sampling as long as

B < A < A. Since a loss results whether 6 is positive or negative,

B = 1/A or sampling should continue as long as

A
1 < expiE12. (1 TC 52 c )]< A

L Q

Taking the logarithm of this gives

- a < 4 (RI. _ R2) < a
cr

or
n
L (x - x ) < 02il i2 6

av-1-
o
..f.

i=1

The average expected sample number (ASN), designated

here by n**, for assumed large N is:

and

n
** a2 a (exp[a]-1)

62 (exp[a] + 1)

(1 - exp -al) 1

./- (exp[a]-exp[-2]a) exp[a] + 1
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Maurice then substitutes n** for n* and P for n*P. in the expression
for E(L), maximizes with respect to 6, minimizes with respect to
a/ 6, and finds a solution of the form:

D
1:

If E ( X - Xi2
1

> 0.5842 PrIsi cr
=1

make all subsequent observations from

D
2° (X.

11
- X.2) < 0.5842 a a

i=1 1

make all subsequent observations from 7T2.

Do: If - 0.5842 aagE (X
i1

-Xi2) 0.584241%1'a

take another set of k observations.

However, in the current application, and in other industrial
applications, another cost should be included, and that is the cost of
taking observations. This cost has not been included in the formula-
tions of Maurice and others, and is derived here in Case Ma 4C ii.*

Case III a 4 C ii.* The conditions for this case are the same as those
for case III a 4 C ii, except there is the additional expected loss
attributable to the cost of sampling, or taking observations. For the
case of k = 2

E(L) = n* + n* C + (N - 2n*)6
*P*n 3)

where C is the cost of taking observations on each pair of Xil, Xi2.

j *K

If C can be stated as a percentage of the 6, i.e., C = p

E(L) = n* 6 (1 + p) + (N - 2 n*) b (n*Pi)

and letting c = 1 + p

E(L) = n* b c + (N - 2 n*) 5 (n*Pi)

Following Maurice' s procedure, substitute n** fox n* and P for

n
*P. in the above expression, and let:



a
6-

.8. E(L) 6c a22(exp[261-1 + N[ 2a22(exp[261-1 6

6(exp[26] + 1) 6(exp[261+1) Lexp[261+11
2

N6
2a2.8 (exp[261-1)

+ c a2i(exp 26 -1)
E(L) = ewo.

. 2 (exp[261+1)
(exp[26]+1)

To solve for 2:

8E(L) N(exp[26]+1-26 exp[245]) 2a2.82exp[261
86 (exp[26] +1)2 (exp[261+1)2

4a222 exp[26] (exp[26]-1) 2c a222exp[26]

(exp[26] +1)3 (exp[261+1) 2

Setting this equal to zero and substituting x = exp[26], 2n x =

8E(L)

N 222x(3-x-c-cx)
a2 (x+1)(x+1-x EX)

N6
2

exp [26]-
(exp[26] +1)2

4a226
exp[261 (exi,.../LEN:1)

(exp[261+1)3

2a 2(ex( 261-1)

(exp[261+1)2

2c a226 exp'26]

(exp[26]+1)2
0

2a226 exp[26]

(exp[26] +1)2

c a2(exp[26]-1)

(exp[26]+1)

. N -2(x-1)(x+1)-2xinx(x+1)+4xinx(x-1)+c(x-1)(x+1)2 +2cLenx(x+1)

a2 62 x (x+1)

Equating the and simplifying yields
a

x 2n x(4x-8)-cx 2n x(x+1)(x+3)-2(x-1)(x+1)+c(x-1)(x+1)2 = 0

or, in terms of the percentage of 6
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4 x x(x-2)-(1+p)x x(x+1)(x+3)-2(x-1)(x+1)+(1+p)(x-1)(x+1)2 = 0

Solving this equation for different values of p, and substituting these

back into the expression for, the required solution for .8 is found
ah

from
j(x+1)(x+1-x x)

a 2x(2-2x-p-px)

The decision rule now is:

D
1:

If E (xil -Xi2
)> .gaNTI make all subsequent observations from 71

i=1

D
2 1

If E (X. -X.
2
)< -2a4Si make all subsequent observations from g2

i=1

Do: If -,gariN =5. Em., -)c.n16 >g iata take another pair of observations
i=1 11

Table 5 below gives the x and 2 solutions to the above equations for

different values of p.

TABLE 5

TWO-STAGE SEQUENTIAL STOPPING CONSTANTS

X 2

0.0 9.061169 0.584160

0.2 8.517213 0.536543

0.4 8.148601 0.498402

0.6 7.883984 0.467080

0.8 7.685562 0.440822

1.0 7.531641 0.418433

1.2 7.408969 0.399067

1.4 7.309016 0.382113

1.6 7.226079 0.367117

1.8 7.156191 0.353734

2.0 7.096525 0.341697

2.2 7.045010 0.330798

2.4 7.000092 0.320870

2.6 6.960585 0.311777

2.8 6.925579 0.303410

3.0 6.894347 0.295677

3.2 6.866313 0.288504

3.4 6.841013 0.281825

3.6 6.818063 0.275587

3.8 6.797157 0.269744

4.0 5.778032 0.264256

4.2 6.760470 0.259088

4.4 6.744288 0.254211

4.6 6.729332 0.249599

4.8 6.715466 0.245228

5.0 6.702573 0.241078
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Case III a 3 C i. A case which is of particular importance in educa-

tional (and other) systems arises when, by the nature of the process

involved, observations will be made on each of the available N stud-

ents (or experimental subjects, Ss. ) and the k populations are known

to be independently normally distributed. In this case, the analytical

solution for the problem of maximizing SN involves evaluating a

(k - 1) - multinormal distribution, tabulated values of which are not

available for k > 3. However, by stating the problem in recursive

form a numerical solution is feasible. Such a solution, using a

backwards-induction technique, is developed here.

In this case, the g
11 2" 31

g. gk
populations are all

independently 3s
known

variances a. and unknown means p.. Let n. be the number of obser-

vations from gj at the n-th stage. Therefore, n=n
1
+n

2
+...+n+...+nle

Let n = N - n be the number of observations remaining after the n-th

observation has been made, and Sn is the sum of the remaining

observations. A k-dimensional decision tree can be imagined where

each branch point in the tree is identified by the k-tuple,

(n1, n2, ...,nk), corresponding to the number of previous

observations taken from each Also, after n observations have

been made, there will exist a k-tuple of sample means

( 5 C, fe, 51n 1 n 2 n , a nRk) corresponding to that (nr n2, ,n.. . ,

branch point actually obtained at the n-th stage. The sample means

can be just as readily identified by the number of stages remaining,

ri, or instead of R., can be used. Given (n
1
,n

2,
,n k)njnj ,n., k

and (fiai, ,512, ...,irXk) at each stage, the principle of

optimality in dynamic programming [26] would indicate for this case

that an optimal decision rule is one which maximizes the sum of the

remaining observations, regardless of what path or what decision

rules one followed in arriving at the two state k-tuples. Therefore,



the problem can be restated as one where Sr must be maximized at

each stage, where:

[SzI (ni n2, ny nk) crFC18 fid3 28 rir5Cj8 8 r7.5CA=

1X + +. + 4,3ix

and the expected value of SS, is defined as:

E[Sir] EE[Sfi, I (ni,n2, . ni , g nk)s (AO frIC2,1

= E[ ID

-2x +..3+
o
~x)113]

i-E [S".,
ID]n -1

D]nj n kI

where the decision rule D is: Select the (n + 1)st = (ir- 1)st observa-

tion from the v. which has the maximum expected value of the remain-

ing observations. This can be expressed by the recurrence relation-

ship:

E[Sfi] = max

xi+E ESN (n +1, n, . . , n ,n),1.-1 k

8rilikLD](,.., x X ,,Xn-1 1'n 2' 'n j'
E [z_lx2]+E [ SIT....1. I (ni, n2+1, . ;.., nj, . . . , nk),

(nlcl' fiL1x28 oriXj fiXic) D]

E[rii-lxj] +Ej [Sri-1 I(
n

1
,n2' ..

. _

VC1' A' n -1 j'

, ni+ 1, ,nk),

"a2k)'Di

ELZ-lxki +Ek[S711-11(n1' n2' .,nj, ...,nk+1),

/'in..7211' n 2' "n js ii-1370' D

Using the implicit assumption of Raiffa and Schlaifer [25] that

unknown population means be treated as a Gaussian distrit ited random
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variable with mean of n3ij and variance of a.2 /n. i.e.,
J 3

4/4 .1 X. a. /n.] , then:
3 n J° J J

"0 I .....

E[Scr] ac max {".51.+E.[S". ]I(n ,n ,.. n . ,n ),,_ .
J n 3 1 2 3° k

nXl'ri 71-121r %Rid' D

= max
u

+ E j[
J

where the new mean is given by

nn.3+111.-1

for j = 1, 2, . . . , k

and is Gaussian distributed with mean X. and variance

a. a.2 2

- = a2/n.(n.+ 1)
n. n.+1

3 J

To solve the problem, the following backwards-induction

procedure is employed:

(a)

+r, = n = N, and therefore 'a = 0. At fri = 0, E[ S".1 = 0, and

there is no decision to make since no observations remain to

be made.

(b) Move back down the decision tree to the (n1, n2... , ni, ...,nk)
state points located at IT= 1.

At each of these state points

E[Ss:i = nrxhaj + Ej[Sail = miaxtr5Cj}

If one were moving forward along a path in the decision tree,

1 2' ,ni, , nkL(R/C1'71512'''S.3Cj''45Ck)then at Ti=1 the (n ,n



(c)

would be known and it would be a simple matter to select

ma.x{113Ci 1. However, in the backwards-induction the

( 31 ",3c . . . ~31 ) are not known, and therefore
r 11.1 1 1 j" 1 k

the exhaustive procedure of considering all possible combina-

tions of (T3 ry5ICia i 2 J. )
TiCi is examined at q discrete
and + co, then at each (ni, n2,

are qk cells, arranged in a k

TRk) will be used. If each

points in the range between - co

nk
) state point there

)
-dimensional array. Each cell

corresponds to one of the possible discrete combinations of

...,75Ck), and in each cell can insert the

value of the maximum of the means corresponding to that cell.

Also, one can record the identification of the population

associated with the maximum mean for each cell. Therefore

D is exhaustively determined for each possible combination of

(" ",3c . ) at eacli possible (n on n ).
1 111 21 11 j° 1 k 1 211 j1 x

Move back down the decision tree to the state points at ri=2.

Here,
E[S2.1 = maxX. + Ei[

Since values for E[S 1] have been stored in the qk cells at n=1,

the E.[S-1 ] is computed from the sum of the products of the
)

stored values with its probability of occurrence. The distribu-

tion of the R. is G[ a./n.(n.+ 1)] and in order to
n-1 ) n -1) n j ) )

find probability weightings for each of the q discrete points

that the distribution range has been divided into, a quadrature

based on a Hermite polynomial approximation to the integrand

can be used, such that

rexp[ -z2] {exP[z24 1)
(z)}dz Z (a. e xp[z.2] gr(z.)= W. gr(z.)

i=1-00 " i=1 "
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where z., a. and W.
1

are tabled [271 for quadratures up to

q = 20.

(d) Step (c) is repeated for rri = 3, 4, , N-k; where N-k corre-

sponds to the starting state point (1, 1, ..., 1, , 1).

The solution then consists of qk cells at each state point in

the decision tree, each cell corresponding to one of the possible

combinations of (X1, X2, 5c k), and in each cell is D, telling

which population to take the next instruction from. While a solution

as outlined above is feasible, the computational time and output

storage requirements are excessive. For example, just to store the

D in each of the cells requires
k k

If II (N-1+a)
a=1

storage locations. The number of required storage locations can be

reduced by observing that:

i. Initially, one observation is taken from each IT.

ii. At points in the decision tree where an equal number of

observations have been taken from each population, and

at the 7.1 = 1 stage, the next observation will be taken from

the population having the largest sample mean.

This reduces the number of storage locations to

k
1, for N even

q b - + (N-k-2 +a) ; where b
'a =1 5, for N odd

[k N 1

For equal population variances the number of storage loca-

tions can be further reduced by a factor of k. Nevertheless, for

example, for k = 3, q = 16, N = 500, and equal variances, a minimum

of 4.19 x 1010 storage locations are required!
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It is possible to make a significant reduction in output storage

space requirements and in computation time by the reparameteriza-

tion described below:

Define a set of superscripts (a, h, such that:

a b hX >X >"'''>X >''> Xi

At each n -th stage reassign the set of superscripts to the

R. and a.. Therefore, a given superscript need not be associated

with the same subscript from stage to stage. Also define

U,'.,n (n1 , n
21

n. .nk)0 (11iC
21, l'n ~5 Cn . . "X )1=' n k

E[S]

a
a =

^.X
(nom

.+ E .[
= min .

n
In n-1

a4 a

where

a 1

n n
11-1( TIX Ej[SZ-11)}

= min .-0d1 +
a

0 for Ir. =
A. =

, for it.
as

a

ag

For the sake of simplicity, the case of k = 2 will be used in

the following exposition. Therefore Was aa, and na will correspond

to the larger sample mean Xa
, and lib, ab and nb will correspond to

the smaller sample mean TC13. In terms of the new variables:

56



It is possible to make a significant reduction in output storage

space requirements and in computation time by the reparameteriza-

tion described below:

Define a set of superscripts (a, b, ...,i) such that:
a b hX >X >> >>X

At each fri-th stage reassign the set of superscripts to the

Tt.J , 5J C. and a.. Therefore, a given superscript need not be associated

with the same subscript from stage to stage. Also define

n
(n , , n, Ili nk), ("TIE , "417 ,

1 2 n1n2 "05nkC
1- ,An

a E[Sn
Tf

aa

n

1- =,(14.+E.[Sn-..0
1

u. = minn 4

3
.,

J %
ca

where

v.1 r
A. Z-1(n ?f-1

min {-0111
a

0, for 7r. =

A. = aX -X.
, for a

as 11..

For the sake of simplicity, the case of k = 2 will be used in

the following exposition. Therefore 1Ta, aa, and na will correspond

to the larger sample mean Xa, and vb, ab and nb will correspond tobthe smaller sample mean X . In terms of the new variables:
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Jra 1 re ,
Oh +ri-1 'ff-1 11S-li

1(A, na, nb, a) = min
h n if ca

where
0, for h = a

A = Xa b- X
A , for h =b

aa

To get a recursion in terms of U, expand the expression inside

the ( ) brackets:

h
+ ri-1

UP. = minn h

- E[ Rh]
ff-1

ca

1

n -ix
h

EhESZ-11
a

For h = a, two cases can arise; either n_ix results in a Ti_iXa which

comes from the same population as f.tXa or fr ix results in a
which comes from a different population than ,jca. For the former
case, the first quantity inside the ( ) brackets is equal to:

00 Oa rxa

4S1.1-b aa

2a, (aav/na(na+1) din-ixa a

In the latter case this quantity is equal to:

a b "nab
"-X - nn n [ a a ( aV

a

a a a
G x a n (n +1) .d x

a 71-1 n
-op

transforming both expressions by y = as
"xa-".TCan n and combining terms:
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co r ,

y G[y 10, 1/na(na+:)]dy +
L

GI y10, 1 /na(na+1)] dy
-00

= - Sy G[y 10, 1/na(na+1)] dy +

co co

G [y 10,1 /na(na+1)lidy S G[y 10,1 /na(na+ 1)11y)
-co

co

= (y G[y 10, 1/na(na +1)1dy

transforming by 6 = y + A gives:
co

6- 6 G[616, 1/na(na +1)116

In the two cases described above, the second quantity in the ( )

brackets is equal to:
00

[u, (a Ina+ 1, n iG[6 IA, 1 /na(na+ 1) 116 +

b 03a I

51 ['Clew (6inb,na +1)]G[6 I-A, 1./na(na+1) 116
aa o

n-1

Similarly, for h = b, under the two cases, the first quantity in the
( ) brackets is equal to:

a b
0 + 5ba

[ b ,b
as er

b
X

-
transformin b n-1 ng y y

a

2(ab nb(nb÷

2
co

- G[ y/O (Ly, i ]di y
aa

and transforming now by 6 = y - 6 gives:

d xb



ao

G [.. 6

2
(7nb(nbi. Ada

The second quantity in the brackets is equal to:

b oo

"
I (ab/ b bS (61nb+ 1, naAG [6 I -A, as n (n + 1)] d 6

a o

00

+ S [Ufwn 1 (6 Ina, nb+ [6IA,
-

Collecting terms:

=minn h

h=b;

2
(ab) inb(nb.

-I-

aa J.) d 6

(44 ina+1, nb)-6]G[6 IA, lina(na+ldd6
0

n-1

co

b
+ c-ra-- 3-6 n- 1 (6 Inb, na+1)] 46 I -A, 1 ina(na+ 1)] d6
Q 0

A
w

ao 2

+ (Si [t.L.,
n- 1 (a inb+ 1, na) -6]G[6 I -A,(

aa

b

" tn
a

2op

Jn- ( 6 Ina, nb+1G[61A (9 bb+1)/
1 as n] d6)

T
=min n
a, b

n

a

An attempt was made to numerically solve the above integrals

by using a Gaussian quadrature of the following type:

tS (z)dz = E a. (z.)
-1 i=1 1 1

where z and ai is tabled (28] for q = 1 to 48. Since the limits on the

integrals in areare from 0 to 00 and not from -1 to +1, the following

transformation was employed.
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1+ z 2
6 = 7.7 with Jacobian do = dz

(1-z)2

This quadrature approximation of the integral is not accurate

for value of A approaching 00. At first it was felt that this would not

be of serious consequence, since for very large A one would always

select the population which contained haa. However, the error is

multiplicative as one steps back through the N iterations of the recur-

sion formula, and significant errors occur. This problem was over-

come by using an approximately exponential grid spacing for the A,

and at each A grid point approximating the integral by using tabled

Gaussian probability values associated with seventeen equally spaced

abscissa points in the range of -3.2 a to +3.2 a.

The results confirm the intuitive notion that for na > nb one

should always select the next observation from era. For rias nb there

will exist a range of A, from A = 0 to a critical A, "Ac", for which

a choice from 13 has a smaller expected Uft than does a choice from

era. Therefore, on the decision tree one can associate with each

(na, nb) branch point a A. Having once determined the Ac for all

branch points in the decision tree, the experimenter merely calcu-

lates the actual "AE
" obtained in his experiment at a particular

(na, nb) and compares the tabled Ac at that branch point with his AE.

If AE < Ac the next observation is taken from 712 If AE Ac' the

next observation is taken from ra.

It is possible to show the results by a "topographic" map of

the critical Ac
surface, as illustrated in Figure 6. At present, one

such map is required for each value of N. It remains to be seen

whether some simple transformation of scales, in terms of N, can be

used to obtain the surface from one generalized map. The map,

of course, can only be drawn for k = 2. For larger k, the values of

Ac can be tabled or stored on magnetic tape.
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To use the figure locate the grid point corresponding to
number of observations, na, previously taken from the
category with the larger current sample mean and
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mean.
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Appendix B contains the flow diagram for the computer

program used in the above solution. In its current form, the program
requires an average of one-quarter of a second (on the IBM 7090) for

the computation of each tic. The program allows one to find a solution

for any initial starting point on the decision tree. For example, an

experimenter may have prior information on n1 observations from

w I
and n2 observations from 72 before he decides to use the backwards-

induction solution to determine an optimal path through the remainder

of the decision tree. Also, the program accommodates problems in

which the population variances are known but not equal. An interesting

extension of the backwards-induction technique described above would

be for the case where the variances are unknown.

In the application of the backwards-induction solution
discussed above, the only thing of interest was the Ale However, in

other applications, the value of E[Sir] is required, and therefore

these values are also made available by the computer program.

It is conceivable that a library of solutions for different N and

k can be obtained with this computer program. However, before any

large scale project of this nature is undertaken, consideration should

be given to the use of a hybrid analog-digital computer for the calcu-

lation of the numerous integrals encountered in this problem.

'.1.Ae final comment on this section is that even though some

interesting decision rules have been developed for maximizing the sum

of the net values associated with observations from k categories,

considerable further work can be done in extending and generalizing

both the two-stage and multi-stage sequential sampling plans. For
specified N and k and A (or 6) it can be demonstrated that one or the

other of the various decision rules discussed in this section yields the

highest E[Sz].. However, the differences are not always large, and



the significance of the difference between E[Sir] obtainable with

different decision rules cannot be evaluated without considering the

precision of the basic data and the utility function employed in con-

verting these data into "X" values. Therefore, it is now time to

examine the hitherto mysterious "X" quantities used in this and the

preceding sections.



SECTION IV

A UTILITY FUNCTION FOR THE OUTPUT
OF EDUCATIONAL SYSTEMS

Up to this point, it has been suggested that in a situation where

students are being "educated" and simultaneously being used as

"experimental subjects", one should follow a decision rule which

tends to maximize the net output of all students going through the

system, that is, maximize

Sn 1
= X +

2
X + + nX

Some decision rules which tend to give maximum Sn under

different conditions of a priori knowledge were also suggested. How-

ever, the "net output", nX, has remained ambiguous. This nX can be

prescribed for different sets of conditions, some of which are given

below.

A. Minimum Conditions

i. A nominally described teaching-learning program.

ii. A numerically scaled student performance measure, where

equal distances on the scale have equal "value" and one end of

the scale has "higher value "'than the other end of the scale

(a binary scale is permissible).

The number obtained for each student from the measure

described in ii is the X for use in the decision rule.

The minimum conditions given above are typical of almost all

currently reported educational experiments, where no attempt is

made to specify the relationship between costs of education or the

value of the subsequent life-productivity of the student and the school

performance measure.
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These minimum conditions may suffice for making decisions

on micro-aspects of an educational system, but if one' s actions are

to make sense when judged from outside of the system, then the

system inputs and outputs must be defined in value units which have

currency outside the system. This is not a new problem, but one that

has continuously plagued educators and has long been considered of

fundamental importance. The views have often been despairing. For

example, M. L. Jackson [29] noted the similarity between some engi-

neering and some educational processes. He suggested that "the

student is our 'product' in the manufacturing process of education.

The raw material varies, sometimes in an uncontrollable manner.

Classroom instruction is the process whereby the product is formed

and this phase is of overall importance. The final product cannot be

evaluated except after a number of years, and in most cases the feed-

back is obtained too late, or not at all". If what Jackson says is true,

then very little meaningful analysis of such an educational process is

feasible. If a current value for the output of the educational process

stated in the same dimensions as the value of the inputs cannot be

found, and if differences in the output cannot be related to specific

differences in the transform, then the problem can only be resolved by

insight and intuition.

The problem can be illustrated by a simple example; given the

following data:
Method A Method. B

Average Final Examination Score 80 90

Average Learning Time 9 months 6 months

Cost per Student $1200 $2500

and the statement that differences between the average examination

scores and the average learning times for the two methods are statis-

tically significant, how does one determine which method to adopt?
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How does one evaluate whether or not an increase irk examination

score of 10 points is worth an increase in cost per student of $1300?
Or what "value" should be assigned to the three months' saving in
learning time possible with Method B? Is one justified in using some
combined measure of score and time, such as the commonly suggested
final score divided by learning time? Why not use final score divided
by the logarithm of learning time, or any other arbitrary weighting?

Partial answers to some of the aspects of this problem are
found in the recent literature on the measurement of educational
system outputs. Jones [30] used a rating of the individual graduate' s
subsequent "success" as evaluated by his peers and also the grad-
uate' s self-rating of satisfaction and achievement. Jones also
attempted to obtain evaluations (from teachers of the graduates) on the
contributions to society made by the individual graduate, and also on
how these contributions compared with the teacher' s subjective
opinion of the potential capabilities of the graduate. However, there
is some question as to the validity and reliability of the above meas-
ures.

Many investigators use life-cycle earnings of students as the
measure which is (somehow or other) related to school performance,
not because earnings are a more valid measure, but primarily
because it is a more reliable and more readily available measure.
Earnings are certainly not an ideal measure, since differences in
income can be attributed not only to differences in the type, quality,
and extent of education, but also to persimality factors, regional
factors, family contacts, etc. However, income has remained the
most commonly used measure of the effect of education on student
output.



Machlup [31] conceives the educational system as a knowledge-

spreading industry and evaluates its economic efficiency. He calcu-

lates that this industry in 1958 produced goods and services worth

$136.4 billion, and that all forms of education cost $60 billion, or

almost 13% of the 1958 Gross National Product. He states that the

total knowledge industry accounted for 29 percent of the Gross

National Product and is now growing about two and one half times

faster than the industries that produce all other kinds of goods and

services.

Becker [32] studied rate of return from college education,

allowing for the generally higher initial ability of the college student.

He found that the rate of return on the investment in college education

by urban white male students, including income foregone by the student

while attending school was 12.5 percent in 1940 and 10 percent in 1950

before taxes. When the social cost of college education was added to

the individual cost, the rate of return in both years was about 9 per-

cent before taxes. Schultz [33] estimated that the rate of return on

investment in college education in 1958.was 11 percent. He then

calculated the total years of education in the laboi force, gave appro-

priate weights to each level of education, and estimated that the

return on the total investment in education was 17.3 percent. Schultz,

like Becker, included income foregone in the total cost of education.

Both Becker and Schultz calculated on the basis of total resource

costs as well as on private resource coats.*

*Total resource costs include: (a) school costs incurred by society,
i.e., teachers' salaries, supplies, "rental" of buildings and grounds,
etc., (b) opportunity costs incurred by individuals, i.e., income
foregone during school attendance and (c) incidental school-related
expenditures paid by individuals, i.e., books, travel, etc.
Private resource costs include the same three components, except

that in (a) above tuition and fees paid by individuals are substituted
for society' s costs, which are normally defrayed through taxation.
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Hansen [34] has derived the internal rate of return for varicus
levels of schooling from grade one to the completion of four years of
college, and indicated that this measure provides a more useful
method of ranking the economic returns to investment in schooling
than do the more conventional lifetime or present value of lifetime
income methods. Miller [35] computed the 1949 capital value of
lifetime income according to years of schooling. Houthakker [36]
estimated the present value of income streams associated with dif-
ferent levels of schooling on the basis of alternate discount values.

The view adopted here is that the investment which the individ-
ual and society make in education yields a return in the form of an
increase (or decrease) in the contributions which the educated individ-
ual makes to his own well-being and to society throughout his later
life and that current measures of student performance are indicators
of the probable extent of these contributions. This view will be made

more explicit, and methods for obtaining quantifiable input-output
values will be suggested.

Imagine a "national reso'irce pool" consisting of all the pro-
ductive output,* instantaneous and accumulated (capital), of the
population, as pictured in Figure 7. With a growing population, this

pool can increase merely by the greater numbers of people entering
the pool than leaving it, assuming the productive capacities of the
entering and leaving persons are the same. In order for the people
entering the work force to be able to perform most tasks, they
require some training, at lease in the language and customs of the
nation. Above this minimum -- let' s say, unskilled laborer

*
"Productive output" is here used in a very broad sense to cover any

human activity which has social or private value. Later, a specific
kind of productive output and a measure for such output will be
described.
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training -- the question arises as to how much of the national

resource pool shall be withdrawn from active productive activity to

increase the future productive output of the entering (or existing)

work force. The question is similar to that propounded by Adam

Smith in Wealth of Nations, (1776): How much benefit do I forego now

in order to increase my benefits later? For example, in order to

train prospective engineers, a certain number of "experienced" engi-

neers must be withdrawn from active practice of their profession to

"teach" the trainees. Simultaneously, a number of unskilled laborers

must be withdrawn from the work force to become trainees, and also

accumulated resources must be set aside for bricks and mortar to
build schools, rather than, say, shoe factories. This can be illus-

trated as in Figure 8.

Presumably, after a time, the resource value of the trainees
will be greater than the loss of withdrawing a, b, and c from the pool.

A time-dependent relationship is needed to express this.

Figure 9 shows productive output vs. time for the "trainee"

and for the same or equivalent person without tra'^ing. The two
curves form an interesting map, but the topography can be further
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reduced to point values. Two possible point values are

where

L
*

P(m) and L P(m)

P: Annual productive output of "trainee".

P: Annual productive output of "non-trainee".

m: Years, from beginning of training or non-training

bifurcation.

However, if a decision must be made at the bifurcation point

whether to shunt an individual to the "trainee" or to the "non-trainee"

path, the above simple .point values may be inadequate since they

ignore the fact that some of the annual productive output occurs

closer to the bifurcation point than others. In short, the simple sum-

mation of annual outputs ignores the time value of productive output.

It is suggested here that more reasonable point values of the produc-

tive output curves are given by:

= [P(m)] [R(r,m)

w = z 1P(m)] [R(r,m)]
m L

where
IN: The present worth of the life-cyclet productive output

of the "trainee".
W: The present worth of the life -cycle productivity of the

"non- trainee ".

R : The present worth discount factor.

r: The discount rate.

1."Life-cycle" productive output is another way of describing the pro-
ductive output curve. It is an expression for P(1), P(2), ...P(m), .
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The X to use in the decision rule is:
A

X = -

or, the present worth (at the age or date of bifurcation) of the

difference in life-cycle productive output of the "trainee" and

"non- trainee ".

The recommendation to use a present worth discount factor on
the life-cycle productive output is based on the following assumption:

ASSUMPTION 1. Productive output which becomes available

n years from now has greater weight in influencing current

decisions on the allocation of resources than does the same
quantity of productive output which becomes available n + m

years from now (where n 0, and m > 0.

Assumption 1 brings with it Condition 1.

CONDITION I. In any specific situation where decisions are
made using Assumption 1, an appropriate discount rate can

be specified.

The choice of an appropriate discount rate requires human
judgment, and in an educational system there is practically no way to

prove an error in such judgment. Some comfort can be drawn from

the hypothesis (which will be tested in the penultimate section) that

many decisions are relatively unaffected by a change in the discount

rate (within the range of usually selected values of 3-10%). Further-
more, there are commonly accepted, guidelines for choosing a dis-

count rate" Nevertheless, the choice of using present worths of

From the point of view of the "national resource pool", the minimum
discount rate should be equivalent to the annual rate of growth of the
national resource pool attributable to the growth of population. From
an institutional point of view, the appropriate rate could be the pre-
vailing rate on loans to the institution or the rate of return on other
investments made by the institution.
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life -cycle productive output in a decision rule, rather than, say, the

abstract student performance measure of Minimum Condition A-ii

is predicated on the belief that the effect of an error in judgment in

the first case (using present worth) 7!.s less than the effect of an error

in judgment in the second case (using Condition A-ii).

Returning now to the P(m) given above, it is seen that during

the training or educational period productive output is consumed, i. e.,

withdrawn from the national resource pool. It will be convenient to

treat this "negative" productive output as a separate quantity. Also,

anticipating the form in which data on productive output is currently

available, "m" is redefined to mean "years of experience". There-

fore:
*

X = W - NV-

= [P(m)] [R(r, m, T)] - [1 ( m )] [R(r, m)]- E [DI (T)] [R(r, T)]

m=1 )][{14-1-171-11-ibgi[AmS1114-ii

- [Dr (T)]
T=3.

where the redefined and new symbols are:

W: the present worth of the life-cycle productive output of

the "trainee", excluding educational costs.

V: The present worth of the educational costs.

DI : The annual educational costs.

T: Years from bifurcation date.

T: Nominal time-span for education or training.

a: Age at which individuals enter the system
(age at bifurcation point).

b: Retirement age.
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In the foregoing, the effect of individual and educational dif-
. *

ferences on the P, P, and D' has not been considered. If these

differences are taken into consideration, then the productive output

for a given individual will correspond to one of the family of curves

shown in Figure 10. The question of individual and educational dif-

ferences will now be examined in more detail, first under ideal and

then under more realistic conditions. Furthermore, an attempt will

be made to apply the concepts, expounded above for a macro-system,

to sub-units of the macro-system.

B.

EFFECT ON PRODUCTIVE OUTPUT FROM
INDIVIDUAL AND EDUCATIONAL DIFFERENCES

Ideal Conditions
FIGURE 10

If one could state the amount of productive output during each

future year of a student' s life attributable to specific personality

factors and to specific performance scores on a specific version of

a sub-unit of a total learning experience, given the history of per-

formance score on all other sub-units, then a measure of the "gross

value" of the student' s performance in the sub-unit could be obtained

from the present worth of the sum of these stated annual productive

outputs. Furthermore, a "net value" could be obtained by subtracting

from the "gross value" the present worth of the productive assets
used in providing to the student the sub-unit of learning experience.
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Explicitly, the conditions for the ideal case are:

i. A nominally described teaching-learning program, divided

into various sequences of sub-units, with various versions of

each sub-unit, each of which can be separately described and

analyzed.
ii. A time span for completing i, and each sub-unit of i.

iii. A cost associated with providing each sub-unit of i.

iv. A student performance scoring procedure, in which the

scores are related to those factors in the teaching-learning

process which can be manipulated by the educator-experimenter

and are independent of the student personality factors.

v. A personality rating prova re, in which the ratings are not

affected by the teaching-learning program.
vi. The future increment in life-cycle productive output (of an

individual with specified personality factors and history of

performance) attributable to a specified performance in a

specified version of a given sub-unit.

In this ideal case, the X used in the decision rule is given by:

where

and

where

and

nX . = AW - V,

b-a-7
AW = E [ A P(m, g, a, 13, j, [R(r, rn,Td

m=1

R [(r, m,7)] IM

{1.-r

V = [D(t, [R(r, t, Td
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R[(r,t,T)]
7 -

1+1 r}

t

2

where the new symbols used above are:

n: The number associated with each individual in the

sequential sampling and decision rules.

.8: Sub-unit designation.

j: A version of the sub-unit.
i: The sequential number assigned to each "individual"

in "j 2".
AP: The increment in life-cycle productive output attri-

butable to going through the "j 2" sub-unit.
OW: The present worth of the increment in life-cycle

productive output.

g: Student performance score.t
a: Student personality rating.
13: History of performance on other sub-units.

Time span required by student to complete i.

t: Time span required by student to complete the

"j sub-unit.
D: The total costs associated with a sub-unit.

In this ideal case, the exact information on future productive

output and on learning time for sub-units which come after the "j .8"

sub-unit are presumed to be available at the instant when the student

completes the "j .8" sub-unit. Since this is obviously impossible,

estimates for AP andl-must be found. Also, AP implies that in the

ideal case the increment in productivity is directly measurable,

something which is rarely possible. Most likely, AP will have to be

"g" is independent of "t". If the performance specifications include
a measure on speed, then this is reflected in the performance score.



derived from the difference of two P' s. Consideration will first be

given to the question of how to obtain estimates for P' s and' s, and

then the possible ways of obtaining AP will be considered.

If the life-cycle productive output of individuals who have

previously gone through the "1-th" sub-unit and who have the same

g, a, 0 characteristics as the student who is currently completing

the ",8 -th" sub-unit are available, then it is suggested that an esti-

mate of P(m) for the student can be obtained from projections of the

P(m) of the "old grads". The data on past productivity from which

the estimates of future productivity will be made is designated by

P(y' , m, g, a, J3, j,2) where y' indicates the date on which "old grads"

entered productive activity.

It is also possible to obtain an estimate of-nor the current

student by matching the student' s history of "t" on all sub-units up

to and including the "i-th" sub-unit with the history of "t" of the

"old grads" and then projecting from the-3-(y') of this matched group

to an estimated-nor the current student.

There are various methods for making forecasts, such as is

suggested above for P and T, from data on previous events to

projected future events. All such forecasting methods presume a

certain stability of the environment in which the events occur. Such

stability does not necessarily mean that no change takes place, but

rather if changes do occur, then the rate of change should be stable.

The practical application of much of what follows below

depends upon the exactness of the forecasting and the ability to

recognize when the assumptions of stability are being violated.

Stated another way, the recommendation to make forecasts of future

productive output from data of previous output is based on the follow-

ing assumption:
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ASSUMPTION 2. The factors which affect the relationship

between an educational experience and subsequent productive

output remain stable and discernible,

CONDITION 2. An appropriate transform can be specified

for converting data on previous productive outputs to

estimates of future productive output.

Since general concepts are being developed in this section,

the possible transforms that could be used will not be discussed here.

A detailed example of one such transform, for the life-cycle

productive output of engineers, is given in Section V. Two comments,

however, are pertinent at this point.

First, a word of caution about the indiscriminate use of

mathematical curve - fitting techniques: a graphic display of the data

may help in discerning anomolies or violations of Assumption 2. For

example, Figure 11 shows a graphic plot of some hypothetical

P(y , m) for persons who started productive activity in the years

(30 ) 1910, 1920, 1930, 1940, 1950, 1960. The dips in the curves at

the cross-marks show the influence of the anomolous depression

years.

Second, by the very nature of the data shown in Figure 11,

as ''m" increases, the number of data points available for forecasting

P(y, m) decreases. Therefore, the forecast of the productive output

for the later years of experience are more subject to error. How-

ever, by using the sum of the present worths of the expected produc-

tive output for each year of experience in the calculation of nXiir

the effect of the larger errors in forecasting the output of later years

is partly offset by the relatively smaller weighting given to output of

these later years.
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Some additional factors should now be considered, the first of

which is a mortality factor. In making projections of expected life-

cycle productive output from the record of individuals who have

already had a productive output for "m" years, a mortality factor
should be included to account for the probability that a student will be

alive during each of the "m" years of his potential life-cycle of

productive output. Also, a transform should be included to convert

the various measures of productive input and output to one common

measure, preferably to a monetary measure. It will be recalled

that "productive output" is being used in this ideal case to cover any

human activity which has social or private value and could include

such diverse things as building bridges, writing scientific papers,

receiving honors or prestige, enjoying leisure time, painting non-

salable paintings, and so on. However, even in the ideal case,

dimensional conformity is required of all the elements in an equation.

A monetary measure, and more specifically, a dollar measure is
recommended because much of the inputs and outputs that are likely

to be considered are already measured in dollars. The use of a
transform to convert all forms of productive output to dollar units

brings with it the need for a transform that will corvert dollar units

of productive output reported in one year into dollar units of produc-

tive output reported in another year. In other words, adjustment

must be made for the year to year fluctuation in the value of the

dollar.

Consider now the problem of finding a AP, the increment in

life cycle productive output attributable to going through a particular

sub-unit. In some rare cases it may be possible to match the

productive output (P) of individuals who have had the "2-th" sub-unit

with the productive output (P) of individuals who have had all other
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sub-units except the "2-thn. Incorporating all of the above ideas gives

the following modified ideal case.

C. Modifications to the Ideal Conditions

1. Conditions for the Modified Ideal Case Using

is) and p(y,

i. A nominally described teaching-learning program, divided

into various versions of each sub-unit, each of which can be

separately described and analyzed.
ii. A time-span for completing i, and each sub-unit of i.

iii. A cost associated with providing each sub-unit of i.

iv. An objective, stationary, student performance scoring proce-

dure (i.e., where scores obtained now have the same signi-

ficance as scores obtained some years ago), where the stores

are related to those factors in the teaching-learning process

which can be manipulated by the educator-experimenter and

are independent of the student personality factors.

v. A personality rating procedure, in which the ratings are not

affected by the teaching-learning program.

vi. Data on the life-cycle productive output of individuals who

have previously completed all sub-units of i. The data are

sub-classified according to personality factors, history of

performance on all sub-units of i, the date of entering pro-

ductive activity, and for each year of experience.

vii. Data on the life -cycle productive output of individuals who

have previously completed all except the "B-th" sub-unit of i.

The data are sub-classified as in vi.
viii. A transform which converts the data given by vi and vii into

expected (or future) life -cycle productive output data.
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ix. A transform which converts all measures of productive output

to a common monetary measure.

x. A transform which converts monetary values reported for one

year into the equivalent monetary value of any other year.

xi. Data on the probability of survival for individuals who do and

for those who do not go through i. The probability of survival

at age "a" at the bifurcation date is equal to one.

The new expression for X under these conditions is:

X . = - V
n

I" *Os d(41:4) ri n a g, a, 13,j, 2))))1 [R(r, m, p(Y,T(y a, 13, j I t)))].

[g(a, m, p(Y,T(y , a,13, j, g, t)))]

- p, d(f(1(y , m, a, 13)01[14 m, p(7,1"(y , a, g, t)))]

M (a, m, P(7,-T(YI, a,13, t) ))]

- [D(t, IR(r, t, .r)]

j,1)1\cliLLVYA
// jai+

m=1

[la (a +m-i + p(5))]

b-a-p(y,t)
[ r

pcsai
4,dgecyt,m, a, ga

m=1
(

(a+m-i+pcsa5)]

[DO, is 2)][11.r. 41



where

and

A

T, a, 0, j, 2, t)

= T(yl , a,

= Y P(y,1)- 7

37 -a ir P(Tri-T)- 7

in which y and y can best be found by successive approximations.

The new and redefined symbols in the above expressions are:

W: Present worth of life-cycle productive output, exclusive

of educational costs.
P: Annual productive output.

A sign to indicate that the symbol below the sign is

associated with the individual who has had all sub-units

in i.
A sign to indicate that the symbol below the sign is

associated with the individual who has had all but the

"1-th" sub-unit of i.

y: Current date.
y': Date on which individual who previously completed i

started productive output.
m: Years of experience, since starting productive output.

p: A transform which operates on the history of past events

to give an estimate of future events.
f: A transform which converts all forms of productive output

to dollar values of the year that the output occurred in.

d: A transform which converts dollars of any given year

into dollar values of any other specified year.

M: A mortality factor (or more correctly, a probability of

survival factor) .
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In the event that the p(y,T) are less than one -half year, the

above formulation is considerably simplified, since we can ignore

7, z, and t in the discount factor R. Thus:

b-a
X = (3' cl(f(1"(Yt Ins ga a* gi iP 2))))] LIMIS

\111 1

n *8 m=11-

[161(a +m

b-a -2 rirr 1 r-
E LP (Y1 d(f(1-5.(3rt'in' a' f3)))).1 171(a "Eni

m=1

- D(t, j,

Either of the above formulations may be adequate for the case where

"2-th" sub-unit under consideration is the last one in the sequence of
sub-units of i, and also in the case where the student' s performance

in one sub-unit is independent of his performance in another sub-unit,

an assumption which is often made for the sake of mathematical

simplicity,t but one which seldom makes sense in most teaching-

learning programs. The temptation to use simplifying assumptions

is understandable, for in this case the logical move is to use the

performance results on past and current sub-units to fill in the con-

ditional probabilities of performance on future sub-units, a procedure

which becomes exceedingly unwieldly and increasingly imprecise as

the number of sub-units increases.

Since initially it may be difficult to accumulate enough

P(y' ,m, a, [3) to use in obtaining satisfactory p(y, P(y1 m, a, A) ,

two other possibilities should be examined.

tSmallwood and Pask both make this assumption in their adaptive
system models..



One of the possibilities is that the proportional part that each

sub-unit contributes to the overall subsequent productive output can

be stated outright, in which case other conditions prevail:

2. Conditions for the Modified Ideal Case Using
A * *

p(y, P), p(y, P) and Proportionality Factors.

i. Same as C-1-i.

ii. Same as C -1 -ii.

iii. Same as C-1-iii.
iv. Same as C -1 -iv.
v. Same as C-1-v.

vi. Data on the life-cycle productive output of individuals who

have previously completed i. The data are sub-classified

according to personality factors, history of performance on

all sub-units of i, the date of entering productive activity,

and for each of the years of experience.

vii. Data on the life-cycle productive output of individuals who did

not go through i, but who had the same initial qualifications

as those who went through i. The data are sub-classified

according to personality factors, the date of entering produc-

tive activity, and for each of the years of experience.

viii. Same as C-1-viii.
ix. Same as C -1-ix.
x. Same as C - 1 -x .

xi. Same as C-1-xi.
xii. Proportionality factors which indicate the part that each sub-

unit contributes to subsequent overall productive output.

For this case:
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A
X.. = c ( - N'T;) V

n

= c (2, E [PO, d(f (P(30 m, g, a, p))))] [R (r, m P(Sr4,-3))]
m

(a, in, p(3-t))]

[POr Cl(f(143T1 anis a))))1i [R(ram) 111[A(a)]

Mr,t,7)]

where the new symbols are:

c: A proportionality or weighting factor, where

c(i) = 1.0 .

y: Date on which individual who does not go through i starts

productive output; also the bifurcation date.
--f-^

Simplifications can be made in the above formulation if p(y,J ) is less

than one-half year.

It should be emphasized that "c" is a subjective measure. If

objective measures are available, they would be used directly without

introducing "c", as for example in the comparison of P and 15 given

above. The difficulty with this subjective measure is that there is

less concrete evidence and there are fewer guidelines available to

help determine the magnitude of "c" than for any other element that

enters into the determinatiori of nXiji. A common assumption,

particularly where the sub-units are very small blocks of learning,

is that each sub-unit has equal importance, and therefore all c-values

are equal. Another common practice (for example, with the semester

courses of a college or high school program) is to divide the sub-units



into two major categoriest and within each category, weight the sub-

unit in direct proportion to the number of teaching hours allocated

to that sub-unit. This practice assumes that within each category

importance is related to teaching time and presumes that the amount

of teaching time required for each sub-unit can be rationally

resolved. D. Rosenthal, A. Rosenstein, and G. Wiseman [37] have

suggested a novel way for a faculty committee to resolve the question

of how to specify the relative (though still subjective) weighting of

the sub-units. Nevertheless, the determination of "c" remains one

of the more interesting areas for further research.

In a comprehensive application of an adaptive teaching system,

one may have to settle for subjective approximative values for "c"

when the system is inaugurated but include a feature for the accumu-

lation of P data which, in time, can be used to supplant the use of

"c". In many cases, the adaptive decisions will not be affected even

by the choice of an inappropriate "c", particularly in those cases

where:

c(W - c(W W)
> > V or

c'(W- c (W - W)
< < V

where "c" is the value actually used and "el" is the unknown

"correct" value. This contention will be examined further in

section VI.

Returning now to the problem of how to circumvent the dearth

of data on f5(yl,m,a,13), another possibility to consider is to forego

the analysis on the sub-units of i and restrict oneself to making

analyses for the entire i in which case neither P nor "c" is required.

tFor example, one category could include all the laboratory and
"non-academic" courses, while the other category could include all
the lecture-recitation courses.
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In this situation "j" could indicate a specific sequence of variations

of the sub-units. If there are many such sub-units and variations of

sub-units, then the number of "j" will be very large, and we are

back to the old problem of fragmenting the P(30 ) into so many sub-

divisions that very large numbers of P(y') will be needed to make

reasonable forecasts of the future P(y). On the othor hand, if there

are few or no sub-units in i worthy of separate analysis (such as in

short courses and in many industrial training situations), then this

alternative is entirely reasonable. The conditions for this ease are

given below.

3. Conditions for the Modified Ideal Case Using

p(y, 143) and P) for the Entire Learning Program.

i. A nominally described teaching-learning program.

ii. A time-span for completing i.

iii. A cost associated with completing i.

iv. Same as C-1-iv.

v. Same as C 1-v .

vi. Same as C-2-vi.

vii. Same as C-2-vii.
viii. Same as C -1 -viii .

ix. Same as C -1 -ix.

x. Same as C -1 -x.

xi. Same as C-1-xi.

The formulation of X for this case is straightforward.
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If 7, T and t are less than one-half year, the above formulation
can be simplified to:
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- E [ p d(f(P(yf m a)))) L11741 il.m(a+m4)in=1
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The ideal case has been treated at some length because it
represents an attainable set of conditions. Admittedly, currently
available conditions are far removed from the ideal conditions, and
it will be necessary to introduce additional assumptions to obtain a
model that can be used today. The practical procedure would be to
start using the strongest model that will work with the currently
available data and simultaneously start gathering data in a form
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suitable for use in a model more closely approximating the ideal
model.

The discrepancies between the ideal conditions and the condi-
tions currently prevailing are given below:

a. Student performance scoring procedures generally are
not objective, stationary, independent of student person-
ality factors, nor related only to the factors in the
teaching-learning process which can be manipulated by

the educator-experimenter.
b. Personality rating procedures which are independent of

the teaching-learning process and which are related to
life-cycle productive output are not available.

c. Data on life-cycle productive output is not generally sub-
classified according to the (unavailable) personality
factors, nor according to the (available) history of
performance on all sub-units of i, nor are all the elements
of an individual' s output recorded.

D. Current Conditions

The question now arises: can a reasonable estimate of X be
obtained from existing data? The answer depends in part on where
the data are coming from. Some institutions have available fairly
detailed information on individual graduates (see Section V on engi-

neering graduates of the University of California); in other cases
individual records are not available and only group mean or median
figures are voted. For example, original data on individuals in old
Bureau of Census and Labor Department surveys have been lost or
destroyed, and only group median figures are available. The answer
to the question of whether reasonable estimates of X can be obtained
from existing data depends also in part on the further assumptions
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one is willing to make in order to reconcile existing data with the

modified ideal set of conditions given in C above,

For example, most of the old data on productive output are

stated only in terms of dollar earnings, with no account being given

to other possible signs of non-dollar productive output such as

scientific publications, service to the community, etc. There are

many ways of arguing this issue, from the one extreme which says

that most apparently non-dollar productive output is eventually

reflected in higher earnings, to the other extreme which says that

our moiety accurately reflects the value it places on productive output

by the dollar compensation it makes for such output. Both extreme

views are certainly untenable for many individual cases but may be

fairly accurate when median figures for large groups of individuals

are considered. The assumptions that are suggested for the use of

old data are:

ASSUMPTION 3. Annual earnings are an adequate measure of

productive output.

ASSUMPTION 4. Where data on the annual earnings of

individuals in a specified group are not available, the median

annual earnings of the group can be used.

Using Assumptions 3 and 4,

f (13(yl,m, = $ (30 ins )

where the $ sign represents median annual earnings, in dollars.

Since dollars have different values in different years, in order

to get some consistent value system, the following assumption is

made:
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ASSUMPTION 5. A stable reference for dollar values is the

purchasing power (on a specified list of commodities and

services) of the dollar.

Using this assumption, the following simple d-transform is sug-

gested:

d( CPI(y, +m)

where CPI(z) is the Consumer Price Index for the z-th year. A word

of caution about the use of CPI: from time to time the specified list

of commodities and services used for evaluating the purchasing

power of the dollar changes; also, the list is designed to reflect the

normal purchases of the urban moderate income family, and the group

whose $(30,m, ) is being observed may not fall into this category.

Looking now at the ideal requirement that performance scores

should be independent of personality factors, it becomes apparent

that not only are the personality factors not specified in old data, but

that these factors are inextricably mixed into the performance scores.

This gives rise tet the following further assumption for the use of old

data:

ASSUMPTION 6. Personality factors need not be excluded

from performance scoring procedures.

This gives rise to a new symbol, g', which represents per-

formance scores that reflect both differences in the teaching-learning

program and individual personality differences and eliminates a from

the formulation of X.

It must furthermore be recognized that g' is usually not

obtained from an objective scoring procedure, but rather from a

relative ranking procedure and that the scoring procedure is not

stationary. It is therefore necessary to make:
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ASSUMPTION 7. An adequate relationship can be found

between previously recorded g' and currently observed g.

Stated another way, a transform "h" is needed, which serves

to map elements in a set of g to elements in a set of g' , or

g )

This h-transform will, of necessity, be different for each

specific application, and an example of one such transform is given

in Section V.

There is a further complication. Very often the median

earnings data are not sub-classified according to g' but instead an

overall median including all values of g' is quoted. However, it may

still be possible to use these global median figures if, from inde-

pendent sources, a relationship can be established between perform-

ance in school and subsequent life-cycle earnings. Then when finding

p (y, P(y' , m, g' )), instead of using the P(50 , m, gl ) which

corresponds to the "g" of a current student, one would use the undif-

ferentiated P(yl,m, ) and a transform to obtain p(y, P(y' , m... .

In order to do this another assumption must be made:

ASSUMPTION 8. There is a discernible and independently

verifiable relationship between performance in school and

subsequent life-cycle productive output.

There have been many studies on the relationship between

performance in school and subsequent productive output, the vast

majority of which report no significant relationship. As a result,

there exists a fairly prevalent feeling that such relationships do not

exist or at best, can only be teased out by introducing such co-

variables as family background, geographic area, personality factors,
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etc. However, a careful analysis of the studies on which the pessi-

mistic feelings are based reveals that most of the studies were made

on students who took their major in colleges of letters and science.

This led to the speculation that training for professional practice

(as in the case of engineering education) would be more highly corre-

lated to later professional success than general education would be

to later success in the variety of occupations in which a person could

be engaged after such general education.

A re-sifting of the literature on such correlational studies was

only partly encouraging. For example, Pierson [38] reported that

for 320 engineering graduates examined, he found a correlation of

0.43 between their GPA on all college work and a rating of success

in their professional life (rated by a faculty member who best knew

the person in college): On the other hand, Havemai and West [39]

indicate for the general college graduate, the low graders earn less

than the high graders, but the highest graders are often in low-paid

jobs such as teaching, etc. Some encouragement comes from

Wallace [40] who, in 1954, studied alumni of the University of

California Schools of Engineering and observed a slight tendency for

higher salaries to go with higher grades.

Apropos to measures of productive output other than earnings,

Taylor [41] investigated whether engineering undergraduate grades

were predictive of later research activity. He used 239 cases and

measured research performance by a three-category rating. The

tri-serial correlation between these ratings and GPA was a dissap-

pointing . 06. But two apparently contradictory reports finally helped

unravel the puzzle. Le Bold [42] made a study of current monthly

salaries of 3977 alumni of the Purdue University Engineering School

and reported a positive relationship between income and scholarship
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for the group with 10 to 25 years of experience. On the other hand,

Eurich [43] quoted two studies, one by the Hughes Aircraft Company

and the other by the National Advisory Committee for Aeronautics

(now absorbed by NASA), wherein for practicing engineers with

6 to 9 years of experience, no correlation was found between their

achievement or salaries and their college records. The significant

point was the different number of years of experience quoted in

Le Bold' s and Eurich' s reported studies. Could it be that the differ-

entiation in earnings was related not only to school performance but

also becomes more pronounced with increasing years of experience?

Actually the answer had been given years before (1928) by Gifford

and later quoted by Bridgman [44]. Gifford found that for the 3806

Bell Telephone System college graduate employees that were studied,

higher salaries were associated with higher college standing, and

lower salaries were associated with lower standing. Furthermore,

the differences in salaries of the high college standing and the low

college standing groups became increasingly apparent the longer they

were employed. These findings are vividly demonstrated in Figure 12.

However, a long time has passed since Gifford'. s study was made and

that study had been based on data from the 1890's to the 1920' s.

More recently (1962) another study of 10, 000 Bell Telephone System

college graduates had been made by the American Telephone and

Telegraph Company. The report on this study [45] indicated that the

employees were dwided into four groups: top tenth, top third,

mid third, and lower third of their graduating class. When they were

cross tabulated by salary thirds, a decided relationship between rank

in graduating class and progress in the Bell System was evident.

That is, 51 percent of those in the top graduating third were in the

top salary third; 40 percent of those in the lowest graduating third

were in the lowest salary third. After this encouraging report was
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received, the American Telephone and Telegraph Company investiga-

tors were prevailed upon to prepare a graph similar to Gifford' s for

in this t dy. The graph is shown in Figure 13. Note that

the difference in median salaries of the top members of the class

and the lower members is not so great in the recent study as it was

in the earlier study.

In the meantime, an analysis was made of the data that was

very conveniently made available at this time from a comprehensive

study of the engineering graduates of the University of California

(Los Angeles and Berkeley) conducted by Harry Case, William LeBold,

William Diemer and their associates. At the time this analysis was

made (1963), data on 1466 graduates from the years 1947 through 1962

were available. All individuals reported their earnings for each year

since graduation and also their average grades while in college). A

check on a sample of 170 graduates revealed that student-reported

grades and grades actually recorded by the registrar correlated at

0.86, and hence the reported grades were thought to be sufficiently

accurate for purposes of correlating school performance and the

earnings received in later careers. The sample consisted of graduates

of different years having different lengths of experience on the job.

Because the purchasing power of money has itself changed during this

period, all reported earnings were made comparable by converting

them to equivalent dollars of 1962. Then the median earnings for each

category of reported college grades were calculated as a percentage

of the overall median for each year since graduation. This is shown

in Figure 14. We note a similarity between the results of the

Additional data is available on family background, high school exper-

ience, personal factors, etc., on these graduates, and members of

Dr. Case' a group are making their own analyses on how these other

factors may co-vary with earnings and grades.
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University of California study and the later American Telephone and

Telegraph Company study.

The two studies on the Bell System employees show a rela-

tionship between relative position in the class and subsequent earnings,

and the University of California study indicates a relationship between

grades and subsequent earnings. In these three studies, the

measure of each student' s school performance is relative to the

performance of the student body as a whole. We should bear in mind

that the factors which influence a student to perform at a level to

place him in the top third of his class, or to get an A grade, may be

the same factors which subsequently influence his earning power.

Inborn intelligence, drive, competitiveness, ambition can be sug-

gested as possible factors, and it is exactly these factors which are

not directly manipulated in most educational experiments. There-

fore, it is only with caution and with full cognizance of the implica-

tions of accepting Assumption 6 that one can recommend using a

transform for modifying median expected life-cycle earnings to

reflect different expected life-cycle earnings for students with dif-

ferent college performance scores. Such a transform, "w", depends

on performance score and years of experience and operates on the

undifferentiated or overall median expected life-cycle earnings:

w(g, m, p(y, ,m)))

or more likely:

w(h(g1), gy P(y m)))

in the case where performance is not independent of personality

factors, and where some change may also have occurred between the

grading technique employed in determing "w" and that employed on

the current students.
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If, now, the further assumption

ASSUMPTION 9. An individual' s learning time and perform-

ance score for the sub-unit under examination is representa-

tive of the learning times and performance scores for that

individual in all other sub-units

is made, then /3 can be eliminated from the formulation, and the

estimated time for completing i can be found by the following sub-

stitution:
p(y,-3-)

T'

where, it may be recalled,

t: time span actually required by a student to complete

the sub-unit.
T1: nominal time span for completion of the sub-unit.

T: nominal time span for completing i.

Lastly, and perhaps the most questionable, is:

ASSUMPTION 10. Each sub-unit contributes to future

productive output in the same proportion that the nominal

time span for completing each sub-unit bears to the nominal

time span for completing the whole teaching-learning program.

This assumption gives:

1(1) T' (2)
c(.8)

T

TI(2)

For example, if it were ascertained that students spent approx-

imately 7200 hours in and out of class in study and related activities

during the normal four-year college period, and if the (ter - It) for a

given student is $82, 600, then the "output for an average one-hour



learning experience (including in and out of class time) would be

x $82,400 = $11.50.
7200

To recapitulate, the conditions for using currently available

old data are given below:

i. A nominally described teaching-learning program divided into

various versions of each sub-unit, each of which can be

separately described and analyzed.
ii. A nominal time span for completing i f.A-d each sub-unit of i.

iii. A cost associated with providing each sub-unit of i.

iv. A student performance scoring procedure.

v. A transform for relating current scoring procedures to

previous scoring procedures.
vi. Data on the median life-cycle earnings for the group of

individuals who have previously completed i. The data are

sub-classified according to date of entering productive

activity, and for each year of experience.

vii. Data on the median life-cycle earnings for the group of

individuals with the same initial characteristics as the group

in vi, but who have not gone through i. The data are sub-

classified according to date of entering productive activity,

and for each year of experience.

viii. A transform which converts the data given by vi and vii

into expected (or future) life-cycle earning data.

ix. A transform which converts median expected life-cycle

earnings into expected life-cycle earnings for individuals

with different school performance records.

x. A transform which converts dollar earnings reported for one

year into equivalent dollar values of any other year.
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xi. Data on the probability of survival for individuals who do and
for those who do not go through i.

xii. Proportionality factors which indicate the part that each sub-
unit contributes to subsequent overall productive output.

xiii. An estimation of the total time required for the individual
student to complete i.

Using the transforms suggested above for this case, the
Xij2 for a student with (g, t) is:n

tTb-a-rr

nX. (g, = T1

ii)
_ CPI(y) 4$(0 m)))] .(gt ), y. CPI +m)m=1

where

[

tT +m- 1

{th}T [1q (a+m_i
2 I/

- T1 (2) bia [PG' CE21(Y1CPUYI+m) 4371°14[6
2

T m=1

P(a+1114)]

- [D(t,J,,ed

tT
Y =Y +

It is appropriate, at this juncture, to examine how the data
for the right-hand side of the above expression can be obtained.



SECTION V

DATA ON THE OUTPUT OF
ENGINEERING EDUCATIONAL SYSTEMS

It has been pointed out in Section IV that the formula for
obtaining nXiii(g, t) from existing old data would probably be most

appropriate for educational or training situations which impart knowl-
edge and skills that are direct use in later professional practice.
Engineering education qualifies as such a teaching-learning situation.
Furthermore, it turns out that the only group for whom relatively
precise records of earnings have been kept over the past fifty-five
years is the professional engineers. It is therefore within engineer-

ing education that the unique opportunity exists to immediately employ

the valuation techniques described above.

A. National Data on Engineers

Engineers' salaries have been surveyed on a national basis
since 1908. A composite picture of some of the survey results is

shown in Figure 15. Table C-1 of Appendix C gives detailed informa-

tion on the sources of earnings data and mentions the adjustments
that have to be made in order to reconcile data from different sources.
Also in'!icated in Figure 15 are the 1962 median salaries of engi-
neering graduates from the University of California (Berkeley and

Los Angeles Campuses).1.

The salaries shown in Figure 15 are not directly comparable,
since the purchasing power of the dollar changed during the reported
period. Consumer Price Index figures and Adjusting Factors for
different years are shown in Figure 16. In using the Consumer Price

From unpublished data, University of California Engineering Grad-
uate Study, courtesy of H. W. Case, William Le Bold and William
Diemer.
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Index, and the Adjusting Factor derived from it, one should be aware

that the adjustment is approximate, since engineers' earnings tend

to be higher than that of the urban moderate-income family whose

living costs the C. P. I. is designed to measure.

Figure 17 shows the reported salaries adjusted to 3962

equivalent dollars. Comparison of Figures 15 and 17 reveals that

real purchasing power has increased less dramatically than dollar

earnings.

Observe that Figures 15 and 17 show the median salaries

versus years of experience for the different survey yeaes. Not

directly shown is the income of, say, the engineers who graduated

in 1953. Their salaries are shown at zero years of experience on

the 1953 curve and at five years of experience on the 1958 curve. By

picking the data from the existing survey curves, life-cycle data for

engineers who graduated in different years can be obtained. The

unadjusted life-cycle earnings are shown in Figure 18. The adjusted

life-cycle earnings are shown in Figure 19.

Earnings are seldom shown in this form, but this is the form

needed for comparing life earnings of engineers who graduate at

different times and is also necessary for projecting expected life

earnings of graduates, of, say, the 1962 class. Shown in Figure 19

are the pr9jeted life-cycle earnings of the 1962 graduate. A middle,

high, and a low estimate are indicated.

Based on the projections shown in Figure 19, the total

expected life earnings for the "average" engineer graduating in 1962

is approximately $579,, 000. The present worth of the expected life

earnings, adjusted for mortality and discounted at different rates

(3%, 41%, and 6%), is shown in Figures 20 and 21. Figure 20 shows

tSee next page.
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the present worth at age 22, the supposed age of graduation from

engineering school. Figure 21 shows the present worth at age 18,

the supposed age at which a high school graduate would choose between

going to engineering school or going to work.

B. National Data on Comparison Group

On the assumption that an income somewhat more than the

national median income would be earned by the high school graduate

who had the ability to enter engineering school but instead chose to

work, the median salary of craftsmen, foremen, and kindred workers

was selected for comparison purposes. For this group, national

salary surveys in relation to age are available for two years -- 1946

and 1951. For other years, only the overall median salary is re-

ported. However, median income figures for all males by age are

available, and these are used as shape curves to derive the salary

curves for craftsmen, foremen, etc. The available data are given in

Tables C-4 and C-5 of Appendix C.

Figure 22 shows two curves for each of the survey years 1946

and 1951. Notice that the salary curves for craftsmen, foremen, etc. ,

closely parallel the income curve of all males except at the extremes

where the latter curve drops off rapidly. Another observation is

that the median earnings for craftsmen, etc., occurs at an age three

ye.virs later than the median earnings for all males. Bearing these

facts in mind, one can derive the salary curve for craftsmen, etc. ,

for say, the year 1961 as follows: The earning curve for that year

tSee Table C-3, Appendix C for sources of information and calcula-
tions of survival factor. Note that no adjustments were made for
school attrition and rate of unemployment. The effect of unemploy-
ment is reflected in the basic data on median salaries, and it is
assumed that the undetermined rate of unemployment remains con-
stant.
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for all males is plotted; the overall median is located at Point A;

the known overall median salary for craftsmen, etc. , is located 3

years later at Point B; then a curve is drawn such that it passes this

Point B and is parallel to the all-male' s earning curve in the middle

distribution and drops off only gradually at the extremes. This

is the derived curve for craftsmen, etc., for the year 1961. Similar

curves are drawn for years 1949, 1955, and 1959, and all these are

shown in Figure 23. The curves shown in Figure 23 are not directly

comparable since the dollar value is not the same over the years.

Using the adjusting factors based on the Consumer Price Index,

adjusted earnings were obtained and plotted in Figure 24. Figures

23 and 24 show median salaries versus years of experience for the

survey years shown. As in the case of engineers, data from these

curves were used to obtain life-cycle curves for craftsmen, etc. ,

who finished high school in different years. Figure 25 shows the

unadjusted life-cycle earnings, and Figure 26 shows the life-cycle

earnings adjusted to 1962 equivalent dollars. Earnings of skilled

workers are rarely shown in this form. Some previous efforts to

derive craftsmen' s life-cycle curves, such as done by De Haven [46]

and by Stewart [47] have been based on the assumption that beyond

the apprenticeship period craftsmen income remains fairly constant.

The life-cycle earnings curve of construction workers deemed by

both Stewart and De Haven to be representative of high school grad-

uates who chose to work rather than go to engineering school is also

shown in Figure 25. Figure 26 includes projections for the various

years and three estimates (high, middle, and low) for the 1958 high

school graduates.

The mid-estimate of the total expected life-earnings for an

average skilled worker graduating from high school in 1958 (presum-

ably the bifurcation date for the engineer who graduated from college
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in 1962) is approximately $317, 000. The present worth at age 18 of

this expected life earnings, adjusted for mortality and discounted

at different rates, is shown in Figure 27.

Room, board, transportation, and incidental expenses

involved in the cost of an engineering edm ation are excluded from

the computation in this analysis. Tin; assumption is made that the

value of these items will be approximately the same fir engineering

students and the comparison group of working craftsmen.

Also, earnings foregone by students are not included, since

the effect of the foregone earnings shows up in the calculation of the

difference in the present worth of the expected life earnings for engi-

neers and craftsmen. However, where students work part-time

while going to school, part-time earnings should be included in the

calculations.

The primary concern here is with the total cost of education,

including those costs borne directly by the student and those costs

defrayed from public or private sources. Such costs are labelled

"cost to society" to differentiate them from the personal cost to the

student or his family. Typical costs and earnings are illustrated

(to scale) in Figure 28. Figure 29 compares the present worth of

expected life earnings and educatirmal costs for engineers and crafts-

men, at different discount rates. This figure shows a difference in

the total expected life-cycle earnings of the (1962 graduate) engineer

and the craftsmen amounting to approximately $236, 000. At a

discount rate of 41% this difference shrinks to $73, 000. The inter-

section of the two curves indicates that the internal rate of return on

an engineering education would be approximately 17%.

At this point enough data have already been presented to

perform some interesting macro-system studies. For example, if

120
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one wished to keep a specified difference between the expected pres-

ent worth of an engineer's and a craftsman' s life-cycle earnings

and also maintain the same level of performance while the engineer

is in college, but decrease the learning period from four years to

three years, how much more could one afford to pay in educational

costs? Qr

X(g, 4) = X(g, 3)

*.(4) - CV(4)=*(3) - W - V(3)

V(3) - V(4) = *(3) - *(4)
3

El [D"q[1.1:-41 [Diq[1114-r}T=-

b-a-3 3+m-4E)
(3r1 4{74-7J1= LP kY 11 CPI(y ÷m)m=1

[g(a+m- 3)]

b-a-4 CPI(y) 1
, $(YI mi)] [{1.-T;- LP k3r° CPUYI +m,m=1

[111(a+m- + 4)]

In a numerical solution, using y = 1962, a = 18, b = 62, and

r = 42%, the right hand of the last equation gives approximately

$12, 600, which is the expected worth of the average engineer' s life-

cycle income attributable to finishing school and starting to work one

year earlier than is currently customary. Also, using the national

average annual "cost to society", for an engineering education,

4 T-12

[DI (7)][{-1-} 1. $6,400 at r = 41%l+r

and

T=1
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3 r irr
EILD"(T).11.11---77:11T-1]T=.1.

w, $6, 400 + $12,600

If D"(T) is a uniform annual figure, and r = 41%

3

Du E = $19, 000
{1.-Fr

T=1

1 $19, 000D' = $6, 800.
2.801

Therefore, one could theoretically afford to spend up to

$6, 800 for each of the three ye-ars in an accelerated program, as

compared to approximately $1, 800 for each of the years in the normal

four-year program.

Another variation of this problem is to calculate the additional

amount of resources one would be willing to commit to education if

these additional expenditures resulted in a student getting an M.S.

instead of a B.S. degree in four years.

Somewhat more speculative, since it introduces the additional

uncertainties of the relationship between school performance and

subsequent professional performance, is the problem of calculating

the additional amount of resources one would be willing to commit to

education if these expenditures resulted in a student getting, say,

an A average instead of a B average.

The above examples are sufficient to indicate the range of

problems that could be investigated. Full treatment of such problems

is left to a later work, since the primary concern here is how to use

the input-output data in an adaptive decision situation.

C. University of California Data on Engineers

In an adaptive decision situation, one should, of course, use

the data which are most relevant to the specific situation. For



example, planners in an engineering school could, as a starter, use

the national median earning figures for forecasting the expected life-

cycle earnings of their graduates if no specific data on the earnings

of graduates from that school are available. Where additional

information is available it should be used. An illustration of the use

of additional data is given below, for the case of the graduates from the

Berkeley and Los Angeles Colleges of Engineering of the University

of California. A difference between the reported national median

earnings of engineers and the median earnings of University of

California engineering graduates for the survey year 1962 was already

noted in Figure 15. A plot of the unadjusted median annual earnings

by year of graduation shown in Figure 30 reveals that the University

of California median figures are consistently higher than the national

median. The University of California figures were adjusted for

change in dollar values and re-plotted in Figure 31. Since the

Los Angeles campus of the University of California had its first

engineering graduates in 1949, the earning curves do not extend

beyond thirteen years of experience. Therefore, the general shape

of the national expected life-cycle earning curve (Figure 19) is used

along with the available curves on University of California engineer-

ing graduates to project an expected life-cycle earning curve for

the class of 1962.

An idealized set of performance correction factors (shown by

solid lines in Figure 32) was derived from a combination of the

American Telephone and Telegraph Company data (Figure 13) and the

available data, covering a shorter span of years, from the University

of California. Also ,mown in Figure 32 (by dotted lines) are the two

extreme estimates for the performance correction factors, i.e. ,

first, where it is assumed that no correlation between school per-

formance and subsequent earnings exists, and therefore all
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130

performance correction factors are equal to 1.0, and second, where
Gifford' s old results are used to estimate the correction factors.

The present worth of the expected life-cycle earnings is
affected by differences in school performance scores, by the time it
takes to complete the education, and by the discount rate. These

three factors are used to modify the expected median life-cycle earn-
ings for the University of California engineering graduate of the Class
of 1962, and are displayed in Figures 33, 34, 35, 36, In each figure,

the left-hand diagram is based on the assumption of no correlation
between school performance scores and subsequent earnings, the
right-hand diagram is based on Gifford' s extreme performance cor-
rection factors, and the middle diagram is based on the idealized
University of California performance correction factors. The shaded
areas indicate the range of values between the high and low estimate
of the median expected life-cycle earnings (see Figure 31).

Figures 33, 34, 35, 36 present (for the 1962 engineering
A *

graduate from the University of California) the solution for (W - W)

in the expression
X. (g, t) = cdir - i) - Vn

b-a- tT tT
T1 (.8) Te ti,1

T
k

+m ) R1+1.
T.

m=1
pqa+m_i+ ti Ti )]

T' b-a
- (Z) Fp(!, CPI(y)

T L CPI(y' +m)
t7

D(t jo

$*(30 in))] [{1
rir *
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In the figures, the abscissa is t /T' and the right-hand

ordinate is (* Wc).

The results shown in these figures will be utilized in the fol-

lowing section where simulation will be made of an adaptive teaching

situation using (g, t) data from an actual experiment with various

decision rules, discount rates (r) and proportionality factors (c).



SECTION VI

SIMULATION OF AN ADAPTIVE
DECISION STRUCTURE

There is an unfortunate aspect to the type of adaptive system
that has been described in the preceding sections: its validity can-
not be tested directly. The method given above for specifying the
output of an educational system either has face validity, or none at
all. Also, the appropriateness of a decision rule cannot be tested
directly, since the identical naive (or unlearned) students are not
available again for testing with alternate decision rules. Even if
matched groups of students are available, in order to compare
various decision rules one must either abandon the cents al concept
that educational experiments should be conducted so as to maximize

S or else engage in the bootstrap operation of using a super-
decision rule (up one rung in the ladder of levels of adaptivity) in
order to find out which is the best decision rule (where the super-
decision rule and the decision rule are likely to be one and the same).

There is a third, vicarious, alternative: use data from
educational experiments which have been previously conducted with-
out benefit of the criterion of maximizing Sn. The procedure for
using existing data would be approximately as follows: take a random
sample of size one from each category; convert the data into X scores;
follow the specified decision rule in determining which category to
take an observation from next; take a random sample of size one
from this category, etc. This procedure could be repeated a number
of times, and the distribution and expected value of Sn for a given
decision rule could be determined and compared with the distribution

and expected value of Sn for other decision rules. There is the
further advantage that the results using the decision rule can be
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compared with the results obtained in the experiment for which the
data were originally collected.

Since values of X have already been plotted for various
combinations of g, t, and r for the engineering graduate of the
University of California, it seemed most convenient to use data from
an experiment conducted in an engineering school of the University

of California. Furthermore, the experiment should have data on
learning time and performance scores. Fortunately, the author had
recently conducted an experiment which meets the above require-

ments [48]. The purpose of the experiment had been to determine

the effectiveness of different branching procedures for self_
instructional material. The precise nature of the branching pro-
cedure and the subject content for each category need not concern
us for the simulation. However, it is of interest to note that a clear-
cut decision could not be made in the original experiment as to which
was the best category, since no category yielded the highest mean
performance score and the lowest mean learning time.

The appropriate model for this experiment is:

X. (g, t) = c(lar - *) - Vn
tTb-a--Tt

T [w(h(gl),CO

m=1

tT-2-
T' +m-

S21171 r! M)))1[6.4
kikY1 CPI(30 +m)

tTpi(a+m-rf Tirij

TI bia Pk
i*

Ys CPI +m)T m=1 (30

t7
[D(ta is i) RIM

where

'97C;1. ft)

1

1

-in- 2. .

)] [{174.1
M(a+m-i)
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T = 4 years (7200 hours)

T = 0 (the experiment was conducted during the first week

of the freshman year)
a = 18 (assumed)

b = 62 (assumed)
= 1962 (assumed)

y = 1958

For D(t, j, 2), the following estimates were obtained:

D(t, 1) =$0.025t+$1.00
D(t, 2) = $0. 025 t + $1.05

Since the g in the experiment are given in percent and the g'

shown in Figures 33, 34, 35, 36 are in letter grades, an h-

transformation is required.. This transformation was obtained by

matching the relative frequency of reported grades for University of

California engineering graduates with the relative frequency of the

percentage scores obtained in the experiment. Then, combining the

h-transformation with the w-transformation given by the heavy lines

in Figure 32, it was found that

CPI

2

(yl+m) 1m)) mk(Nr)]=[1+---e--- .0071700, 000

[..1; CPI(y) 1`00
CPI(y1 +m) "

In the experiment, 'V was estimated at 100 minutes. However,

it is of interest to discover the effect of a choice of "c" on the results;

therefore values of T' = 50, 100, 200 minutes will be used in the

simulation. Also, r = . 03, . 045, . 06 and .10 will be tried.

The original data and the calculated values of X(g, t) for the

different T' and r combinations are shown in Table 6. Also shown

for each combination are the Sn.
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In the simulation, the assumption is made that the cost of
measuring and recording (g, t) for each student is small compared to
X(g, t); therefore, instead of treating these costs as separate
quantities, they are included in the D(t, j, 2). Four decision procedures
are evaluated: Rule 1, Rule 7, the minimax rule, and the backwards-
induction procedure. Furthermore, each of the procedures is used
for two different total numbers of available students: one, corre-
sponding to the number of students available from 7r1, and v2 in the
original experiment, namely N = 58; two, corresponding to an
assumed larger number of available students. In the simulation, the
largest number of assumed available students that can be used is
limited by the maximum N for which the backwards-induction proce-
dure has been solved, namely N = 200. Since actual data are not
available for N = 200 students, the assumption is made that the (g, t)
measures on the students actually observed in the original experiment
are representative of the distribution of such measures for each of
the vj and that random selections from the sample population will be
approximately equivalent to random selections from the v..

Individual simulation runs were made with each of the decision
procedures to check how the procedures behave in the particular
rather than in the expected value sense. The results of these runs
are shown in Appendix D.

Expected values were obtained for each decision procedure by
taking the average of 500 iterations of each problem situation. These

results are shown below in Table 7.

Before examining the results of the simulation, attention
should be called to the small differences between the means of vI and

v2 shown in Table 6. These differences are approximately 0.2 stand-
ard deviations, and therefore different decision rules will not yield
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vastly different results. For example, for r=0.045 and T1=100,

Table 6 reveals that X1= 6.60 and Ic2=7.25,
and the decision rule

must yield an E(Sn/n) somewhere between the two means. One

measure of the effectiveness of a decision rule is given by

Eff
2 12 1

E(Sn/n)-Ai

(assuming 12 2> ti 1) . Using the means given in Table 6 as approxima-

tions of the p, Table 7 reveals that for r=0.045, T1=100, and N=200,

the Eff of Rule 1 is 42%, the Eff of Rule 7 is 75%, the Eff of the

Minimax Rule is 82%, and the Eff of the Backwards-Induction Rule

is 85%. However, the absolute net expected value, in dollars per

student, for the sub-unit of education investigated in the simulation,

differs very little from one decision rule to another. For the

r=0.045, T1=100 and N=200, these absolute values range from a

minimum $6.85 for Rule 1 to a maximum of $7.15 for the Backwards-

Induction Rule, a difference of less than 5%! Since the basic data

used for obtaining the utilities are likely to have errors greater than

±5% it appears that when the differences between the true means of

the are small, the choice of the most effective decision rule will

not give interestingly better results than the choice of a less effective

decision rule. The above statement applies when the r, T1, and N

have been precisely determined.

Table 7 reveals that the choice of r and T' has a much

greater effect on the absolute values of E(Sn/n) than does the choice

of a decision rule, and therefore any systems analysis which requires

the use of the absolute value attributable to a given unit or sub-unit

of education will be greatly affected by the choice of r and T1. For

example, if the administrator of an educational system observed

that the E(Sii/n) was approximately $7.00 per student when comparing
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two different teaching methods, and having assumed an r=0.045 and a

T1=100, he would probably be inclined to continue the sequential

assignment of students to the two methods. However, if an r=0.10

and a T' =100 had been assumed, he may be confronted with an

E(Sn/n) of -$3.00, indicating the inputs outweigh the expected returns,

in which case he would probably want to stop assigning students to the

two methods and probably consider new alternatives.

To conclude, Table 7 indicates that for moderate to large N,

the Backwards-Induction Rule yields better results than any of the

other rules considered, regardless of the choice of r and T/ . There-

fore, this rule is recommended for use in adaptive educational

systems, particularly since the value of r and T' would be fixed for

all students involved in a given sequential assignment problem.



SECTION VII

CONCLUSION

Education is generally conceded to be a wealth or a utility

producing process. It is also a process which 'traditionally has been

shaped by intuitive rather than by analytical decisions. In the preced-

ing sections, an attempt was made to show how an analytical adaptive

decision structure can be built for educational systems. It was

emphasized that such a structure rests on four cornerstones: a plan

for gathering and using data; an explicit criterion function; a set of

decision rules for achieving the criterion; and a utility function which

relates system inputs and system outputs to a value scale outside of

the system.

The utility function developed in the preceding sections

defines the output of an educational system as the increment in life-

cycle productive output attributable to the educational experience for

all individuals who have been part of the system. An approximate

measure of the average increment in productive output can be obtained

by comparing the earnings of two matched groups of individuals, one

of which has had the educational experience, the other of which has not.

Such comparisons are relatively precise for large blocks of education,

such as a college education versus no college education, and is less

precise for smaller units of education, such as a semester course in

a specific subject. The trend, over a number of past years, of the

average increment in earnings of previous students is used to project

the future expected increment in earnings of current students. For

some educational experiences, such as the college training of profes-

sional engineers, a correlation can be found between performance in

school and subsequent life-cycle earnings. In these special cases,

the expected ,increment in life-cycle earnings of a current student can

144



be adjusted by a school performance factor. The expected increment

in earnings is distributed over the productive life-cycle, a span of

perhaps forty to forty-five years. By discounting the future expected

earnings, a single present worth of the entire expected increment in

life-cycle earnings can be obtained. Similarly, a present worth of the

total expenditures made in providing a student with an educational

experience can be obtained. The difference between the two present

worths represents the present worth of the net expected output per

student of the system. By discounting the expected increment in

earnings for each year of the productive life-cycle back to the date on

which a student entered the educational system, an economic value can

be associated with the amount of time it takes a student to complete

the educational experience. All other things being equal, a student

who completes a unit of education in three years would have each of

the annual expected increments in earnings discounted one year less

than if he completed the unit of education in four years. Using this

time-value factor, and the school performance factor, it is possible

for the first time to evaluate the possible trade-off between the

student' s learning time and performance level. Discounting expected

earnings also reduces the effect of the uncertainties and errors that

enter into the projection of future earnings.

The utility function is stated in sufficiently general terms so

that the present worth of the expected increment in life-cycle produc-

tive output need not be measured only in terms of earnings. It is

conceivable that adequate ec( lie measures can be found for such

things as the expected increment in national and individual security

attributable to an educational experience, or in the indirect contribu-

tions to the well-being of other individuals (say, from research

discoveries), or for such indirect benefits as a pleasant work environ-

ment, longer vacations, a healthier life and other currently
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non-monetary benefits that may be attributable to an educational

experience. Evaluation of the non-monetary measures becomes more

important as the emphasis in a society shifts from monetary to non-

monetary rewards for productive output (partly as a result of different

tax rates for low and high earners).

Having established a plan for making an economic measure of

the net output of an educational system, and having illustrated its use

for University of California engineering students, the next important

consideration is to establish an overall goal or criterion of perform-

ance for the system. The criterion that has been suggested here is

that an educational system should operate so as to maximize the sum

of the increment in the net present worth of the expected life-cycle

productive output of all of the students who are being educated in the

system. If one has prior knowledge of the costs and the expected

gross outputs associated with different curricula or pedagogical

techniques, then a straightforward input-output analysie can be made

and that curricular configuration or those pedagogical techniques

employed which will yield the maximum sum of the expected net out-

puts. One example where the costs and expected gross outputs could

be readily anticipated is in a comparison of two-semester four-year

college systems versus three-semester three-year college systems.

However, in most situations of interest, accurate prior knowledge of

the costs and expected gross outputs for different curricular or

pedagogical techniques is not available. Therefore, some exploration

or information gathering is necessary. If such exploration consists

in trying different teaching methods or course content, then some

students will be exposed to methods or content which may be inferior

to other methods or curricular content, in that they yield lower

present worths of the net increment in expected life-cycle productive

output for those students. There is a trade-off between the probable



loss attributable to assigning some students to inferior regimens
during the information gathering phase, and the probable loss attri-
butable to the failure to gather enough information as to which would

be the best regimen for all future students. Therefore, decision
rules are needed for assigning students to available curricular
configurations or pedagogical methods in such a way as to meet the
criterion of maximizing the sum of the net output of all students going

through the system.

A number of possible decision rules have been examined in
the preceding sections. For the case where no prior information
exists as to the distribution of expected net outputs, some qualitative
results have been obtained for specifying the set of "forced choices"

first suggested by Robbins [101 in his statement of the sequential
assignment problem. For the case where the distribution of expected
net outputs is known to be normally distributed, a method has been

developed here for including the cost of making observations on
student performance during the information gathering period in a two-

stage sequential decision procedure. Of most interest was the

development in Section III of a multi-stage or continuous sequential

decision rule for use with normally distributed expected net outputs.
Since records are ordinarily kept on all students in an educational
system, and not only on the first group of students who are assigned

to specific curriculum, the multi-stage sequential assignment proce-
dure is most appropriate. Where records on student performance
are a necessary part of the system for reasons other than their use
in a decision process, or where the cost of obtaining such records is

very small compared to the net output, then the multi-stage sequen-
tial decision process gives better results than any other process.
The solution to the multi-stage sequential assignment problem was



accomplished by a backwards-induction, using numerical techniques

to solve the multiple integrals that arise in the problem.

In the course of developing the framework for the adaptive

decision structure for educational systems, a number of points arose

which seem to warrant further investigation in order to improve the

structure or extend its usefulness. First, in its current state of
development, the multi-stage sequential assignment problem requires

a separate set of calculations for each different estimated number, N,

of students who will be going through a specified educational experi-

ence. For very large N, such computations can be excessively time

consuming, even cn the fastest available digital computer. Overall

computation time could be reduced if the solution is carried out on a

hybrid analog-digital computer.

Another fruitful avenue of investigation is to try to find a

general solution in terms of N. Since the solution for different N

results in surfaces which appear to have some regular features, such

a general solution seems feasible.

The multi-stage sequential assignment problem has only been

solved here for the case where the distributions are Gaussian and

where the ratios of the variances are known. The solution can be

further extended to include the case where the ratios of tts%. variances

are not known, and also to non-Gaussian distributions. However, it is

felt that such extension will be of more interest in adaptive decision

problems which arise outside of the context of the educational systems

that were considered here.

Second, the utility function developed in Sections IV and V can

be considerably enhanced by:
a. Careful studies to reveal those factors (in addition to

school grades) which can be measured either before
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or while a student is engaged in an educational experi-

ence and which correlate with subsequent life-cycle

productive output level.
b. More specific data on the life-cycle productive outputs

of carefully matched "educated" and "non-educated"

groups.

c. A means for including non-monetary indications of

productive output.
d. The development of school performance measures which

use an absolute scale, rather than such relative scales

as obtained from the familiar bell-shaped curve. Some

states have Regents' examinations and some professional

schools have terminal examinations which are steps in

the desired direction.
e. The accumulation of data on life-cycle productive outputs

of students who have been exposed to different combina-

tions of sub-units of a given educational program or have

been exposed to different pedagogical procedures.

Even though the additional research outlined above would

enhance the usefulness of the decision structure, it is possible to use

the existing framework for some significant input-output analyses of

educational systems, and it is also possible to inaugurate an adaptive

decision procedure in some specific cases, such as in engineering

education. Within the framework of the adaptive structure, it should

be possible to make rational decisions on the amount of resources to

allocate to the development of instructional material and on techniques

that would permit a gradual shift from the lock-step grouping of

students in semester length courses to a flexible scheduling scheme in

which each student would progress through an eduational program as



fast as possible, consistent with his own needs and the needs of the

world in which he will some day become a productive member.
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APPENDIX A

SAM

A student using "SAKI" views an exercise line consisting of

alpha-numeric characters which are illuminated one at a time, each

for a different length of time. Simultaneously, the student attempts

to replicate the characters by depressing the keys on a key-punch

machine. A separately illuminated display of the keyboard layout

indicates to the student the correct key to depress at the same time

that a particular exercise character is being illuminated. This help-

ful information may be withheld, either completely or partially. If

completely withheld, the keyboard layout display lamps are not illu-

minated; if partially withheld, these lamps are illuminated after a

delay period, i. e. , some milliseconds after the exercise character

has been illuminated. If the subscript "j" identifies a particular

exercise line (4 lines used in Saki), and the subscript "i" identifies

the position of a character on a line (24 positions), then Tii repre-

sents the interval of time allowed for illuminating the i-th character

on the j-th exercise line, and E represents the delay time for illu-

minating the corresponding character in the helpful keyboard layout

display. The symbols given here are those used by Pask.

1
)Accordingto Pask, a measure, S3..(t , (temporarily stored in

the device as a potential) is obtained by:

a. Determining whether the response is correct or incorrect.

Incorrect responses are arbitrarily assigned a S..
31(

t) value

of minus one.
)b.For correct responses, S.

3i(
t is the difference between

the time allowed for illuminating the ji-th character on

the exercise line and the actual response time.
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c. S.. t) will have am initial value of zero and a value of one at
31(

the end of the training process.

1(
d. 1 a S3.. t ) > 0. (A requirement which appears to contradict

a and c. )

Furthermore, an average value of the quantities S..
1(

t ) called
)

0, is obtained. 8 would therefore have an initial value of zero and a

final value of one.

A storage condenser is provided for each ji character and the

1(
)potentialat any instant on a condenser may be designated by an a3.. t

value. Initially, a charge of value "le is placed on each condenser.

If no move is made, or until a move is made for each ji-th character,

the condenser is discharged exponentially through a high resistance.

If a move is made, the condenser is charged through a resistance for

1
a fixed time, ti , by a potential, S3..( t ) . At the end of the training

)processthe a.
31(

t should all have a value of one.

To recapitulate,
T..

(
t-1) - T

31
(t) for correct response

tS..(t) =
31

31 - 1 for incorrect response
where T is response time

)3:1a S.. (t) > 0 (probably true only for correct response)
31(

tO = avg S t) over all tjl
*T.. t ) = (m + 0) (a..) + u; 0 < u 5.1,

31( 31

1:E = v ( a . 0 v 1
31);

<

tInferred from verbal descriptions

*Explicitly defined by Pask

0 < m 1

156



ta..(t) = a.. t-1) exp
31 31( TC

1 1J

s.1 ( exp[- R2c
3

t

However, for fixed tt

a.. t-1) ex p-
31(

7
R1C1

a (t) =
31(

t-1) exp L- j) Ji(
7 1

)0.1-k)+K S. t

where in, u, v, R, C, K and (S = - 1) are all arbitrary constants.

The initial values are:
S.1(. 0) = 0

3

0(0) = 0

a.
3i(

5-0) = u 1

Tii(0) = (m + 9) (ay.) + u = u(m + 1)

E(0) = v(a.. v u
31)

The final values are:
9(f) 1

f )
1(

a3.. 1

As practice occurs:
i T..

(
t) should diminish

ii
31

E(t) should increase

Assume that the correct responses are made to the first ; characters,

1(
with T3.. t ) = T..(t-1) in each case. Then:

tinferred from verbal descriptions
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Oa) = 0

< aii(o)

it T.3.(;) < T.3.(o)
1 1

ii' and E(;) < E(o)

158

)1
+Ifnow, at t + 1, T.. ( t 1) < T..(t-1), i.e., a response is made in. less

Jl

than the allowed time, then:

1(
S3.. t + 1) > 0 > S..1 (t)

3

(t+1) > 0> (t)

1
a)..(t+1) > a.

Ji(
t )

It T +..t 1) > T3..1 (t)
31(

ii" and E(t+1) > E(t)

But note that violates condition ii, and i" violates condition i.



APPENDIX B

FLOW DIAGRAM FOR BACKWARDS INDUCTION

Read:
q, Al, ....Aq
am'

#g, G(1)t' G(#g)

For:
na = 1, N-2

I 1= 1, q+2

1_ U7,:(I,na) = 0

For:
= 2, N - 1

a

= 1, q + 2

(I, na)
I _ n-1

=Uip, na)

For:

I I na =1, N-ri
I I

I I

I I

I I

I I nb = N-ri -na+ 1
I I

I

I I

I

For:
I = 1, q

TaUrp) =

11-1 {Integral [U,.. (1 na+1) , U ( +2, na +1)1,
eg ' n-1 ' fitl q

aim/ ktia(na+1), 1)

+ Integral [Un-1 (1,nb), Un-1(q+ 2, nb)1,

out/ 141a0nT1-1), 0) +

T UR(I) =

,i(j) +17.4 {Integral [U,.., (1, na)
ii n n-1

U..., (q+2 na)] ,
n-1 '

aint4nb(nb+1), 0)

+ Integral (-I, [U....-1
(1, nb+1)...., Uft,..1(q + 2, nb+1)],

a.

(
1)}

%T(I, na) ==min (TaUri TbUri (I)

Ac
Taterpolated A at point where

TbUfr(I)'= TaUri (I)

Store U at Ac

Output:
na, nb, A
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End



For:
J = 1, #g

Integral (I, [UM, U(2)..... U(q), U(q +1), U(q+2)1, Sig, Flag)

A'J = Sig(I) A( J ) - Sigi(J-1) dA

For:

J = 1, #g

Yes

A Lo =
Largest
A -J

IU Lo=U at A Lo

A Hi =
Smallest
A > g

U Hi =L at ti Hi

r u. = Interpolated U at At , using (A Lo, U Lo), (A Hi, U Hi)
J J

[ If flag * 0, Uji Uji
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TABLE C-1

EARNINGS OF ENGINEERS

Years of
Experience

YEAR OF SURVEY

a
1929

a
1932

a
1934

b
1939

b
1943 11946 b 1953c 1956c 1958c 1960c 1962

d

< 1

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20
21

22

23

24

25

26

27
28

29

30
31

32
33

34
35

36

37

38
39

40
41

42
43
44
45
46

1788

2172

2616

-

3144

3720

-

-

4068

-

4620

-

4968

-
-

5100

4656

1332
1512

1872

2172
-

2460

2808

-

3264

-

3540

3732

-

4080

-

4224

-

3972

1320
1392

1644
1776
1984

2154

2388

-

2688

-

3048

3276

-

-

3504

-

-

3720

-

-

3852

-

3408

1610
1880

2182
2318
2510
2522

2818

3106

:

3404
-

-

3866

-

4588

-

'

5020

-

-

5278

-

5541

5298

2242
2464
2702
2926
3040
3250
3362

3544

-

3754

4108

-

4478

-

-'

4874

-

-

5612

-

5816

-

-

5888

6296

2842
2829
3115
3324
3600
3808
3986

4246

-

4584

4944

-.

5274

-

5679

-

-

6192

-

6490

-

-

6556

6754

4050
.4250
4600
4760
5050
5325
5550

:72
6000
6200

7400

7730

8500

8850

9200

9000

5000
5300
5725
6050
6350
6625
7000

7736::

7750
7800

.

9350

9800

9800

10200

10200

9750

5850
6125
6475
6800
7000
7400
7700

::::
8700
9100

10000

10800

10750

.

10909

11200

10800

6300
6725
7125
7475
7800
8100
8450

9922
9625
9875

11000

12075

12400

12350

12175

12175

6750
7025
7425
8000
8350
8725
9050

991V7:

10125
10425

11900

12700

12850

12700

12425'
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FOOTNOTES FOR TABLE C-1

(a) Source: Employment and Earnings in the Engineering Profes-
sion 1929-34. U. S. Dept. of Labor, Bureau of Labor Statistics,
Bulletin No. 682, 1941. Table 64. Data in the above study
were collected by mail questionnaires. 52, 829 returns were
used in the analysis. The sample was assumed to be repre-
sentative of all engineers in the U. S. The original figures
reflected "monthly earned median income from engineering
work for time actually employed". These have been converted
here to yearly figures. Some of the figures on Table B-1 are
shown bounded by an upper and a lower dash. These upper and
lower dashes indicate the range of the grouping of years of
experience in the original report. For example the fourth
entry in the first column, 1929, is 3144, and it has an upper
dash at year 5 and a lower dash at year 8. Thus the figure
3144 is the median of the group with 5 to 8 years of experience.
The last figure in the columns is the salary for that year of
experience and beyond.

(b) Source: Employment Outlook for Engineers. U. S. Dept. of
Labor, Bureau of Labor Statistics, Bulletin No. 968, 1949,
Table D-13. Data were collected by mail questionnaires. The
sample was assumed to be representative of all U. S. engineers.
The figures available in this report are for median base
monthly salaries for the different engineering specialties, by
years of experience. To obtain a composite figure for all
engineers, the different specialties were summed across at
each year level of experience and the average obtained. Since
the proportion of the different specialties in the total sample
was not the same, an attempt was made to weigh the different
specialties proportionately in obtaining the composite figure.
For the survey year, 1946, both weighted and unweighted
composite figures were found and plotted on a graph. The
curves were practically the same. Hence only the unweighted
composite figures were calculated and these converted into
yearly earnings.

(c) Source: Professional Income of Engineers, 1960. Engineers,
Joint Council, New York. Page 13. Data were collected by
mail questionnaires. The sample was assumed to be repre-
sentative of all U. S. engineers. Figures reflect "median
annual base salary including cost of living allowance and bonus
if considered part of salary". Figures in the original report
were listed by years since B. S. degree. Here it is assumed
that the. year of completion of B. S. degree was the year of



entry into work. Beyond the 10th year of experience salary
figures are listed every five years. These are for terminal
years and not for grouped years as in the case of (a) and (b)

above.

(d) Source: Professional Income of Engineers, 1962. Engineers
Joint Council, New York. Page 15. Same comments as for (c)
above.
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TABLE C-3

SURVIVAL FACTORS

Professional
Workers

(b)
(a) Deaths
Age per 100, 000

18 95
19 95
20 95
21 96
22 96
23 95
24 95
25 94
26 93
27 93
28 95
29 104
30 114
31 125
32 135
33 145
34 155
35 175
36 200
37 220
38 250
39 275
40 300
41 350
42 400
43 450
44 525
45 575
46 650
47 725
48 800
49 980
50 1000
51 1100
52 1225
53 1350
54 1475
55 1600
56 1750
57 1922
58 2075
59 2225
60 2425
61 2650
62 2886

Skilled
Workers

(c)
Survival
Factor

(b)
Deaths

per 100, 000

(c)
Survival
Factor

.99853 138 .99862

.99694 138 .99724

.99599 139 .99585

.99503 139 .99446

.99407 140 .99306

.99312 140 .99166
.99217 141 .99025
.99123 142 .98883
.99030 143 .98740
.98937 144 .98596
.98842 148 . 98448
.98738 157 .98291
. 986 24 167 .98124
.98499 176 .97948
.98364 184 .97764
.98219 200 .97564
.98064 225 .97339
.97889 250 .97089
.97689 275 .96814
.97469 300 .96514
.97219 325 .96189
.96944 375 .95814
.96644 415 .95399
96 294 450 .94949

.95894 500 .94449

.95444 550 .93899

.94919 625 .93274

. 94344 675 .92599

.93694 750 .91849

. 92969 825 .91024

.92169 925 .90099
.91189 1000 .89099
.90189 1100 .87999
.89089 1225 .86774
.87864 1425 .85349
.86514 1500 .83849
.85039 1650 .82199
.83439 1775 .80424
.81689 1925 .78499
.79767 2081 .76418
.77692 2250 .74164
.75467 2450 .71718
.73042 2650 .69069
.70392 2900 .66168
.67506 3137 .63031

(b) Source: Inter- and extra-polated from Table 2 in Monyama, I. M. and Guralnick.
Occupational and Social Clan Differences in Mortality. Trends and Differentials
in Mortality. Milbank Memorial Fund, New York, 1956.

100, 000 - (b)
18

100, 000(c)a



TABLE C-4

EARNINGS OF CRAFTSMEN, FOREMEN
AND KINDRED WORKERS

Age 1946 1949 19j1 1955 1959

14-24 - 2684*

25-34 2202a 3592b

35-44 2629a 3913b

45-54 2753* 3731b

55-64 2456* 3544bc

over-all
median

2433h 3114d 3627b 4423e 5355f

1961

5640g

From unpublished data, Bureau of the Census, U.S. Dept. of
Commerce.

a From Miller, H. P., The Income of the American People.
Wiley, 1955 (Table 25, page 54).

b Bureau of the Census, Current Population Reports,
Consumer Income, Series P-60, No. 11 (Table B).

c For age group 55 and beyond.

d Bureau of the Census, Current Population Reports,
Consumer Income, Series P-60, No. 7 (Table 19).

e Bureau of the Census, Current Population Reports,
Consumer Income, Series P-60, No. 23 (Table 5).

f Bureau of the Census, Current Population Reports,
Consumer Income, Series P-60, No. 35 (Table 25).

g Bureau of the Census, Current Population Reports,
Consumer Income, Series P-60, No. 39 (Table 29).

h Bureau of the Census, Current Population Reports,
Consumer Income, Series P-60, No. 3 (Table 16).



TABLE C-5

EARNINGS OF ALL U. S. MALES

Age 1946a 194913 1951c 1955d 1959e 1961f

14-19 406 410 434 416 411 399

20-24 1247 1726 2259 2223 2612 2654

25-34 2098 2754 3288 3886 4774 5045

35-44 2535 2951 3617 4255 5320 5726

45-54 2575 2751 3280 4138 4852 5321

55-64 2285 2366 2840 3440 4190 4597

65 + 1625 1016 1008 1337 1576 1758

over-all
median

2134 2346 2952 3354 3996 4189

Source: Bureau of the Census, Current Population Reports,
Consumer Income, Series P-60, Nos. (for a) 3,
Table 10; (for b) 35, Table G; (for c) 11, Table 3;
(for d) 23, Table 3; (for e) 35, Table 23; (for f) 39,
Table 25.





TABLE D-la
SIMULATION WITH RULE 1 - FIRST RUN

n
Aj nxj non

p
1
=6.60

n21

p
2
a7.25

ni C2

5.98 5.98 5.98 0.00
9.04 7.51 5.98 9.04
8.84 7.96 5.98 8.94

-0.02 5.96 5.98 5.95
3.31 5.43 4.65 5.95
6.12 5.55 4.65 6.00
9.01 6.04 4.65 6.60
5.92 6.03 4.65 6.49
8.92 6.35 4.65 6.84
6.22 6.34 4.65 6.76
6.07 6.31 4.65 6.68
8.80 6.52 4.65 6.90
5.83 6.47 4.65 6.80
3.20 6.24 4.65 6.50
6.02 6.22 4.65 6.46
8.97 6.39 4.65 6.64
5.62 6.35 4.65 6.57

11.87 6.66 4.65 6.91
11.81 6.93 4.65 7.19
6.00 6.88 4.65 7.13
5.98 6.84 4.65 7.07
6.07 6.80 4.65 7.02
8.86 6.89 4.65 7.11
0.39 6.62 4.65 6.80
6.04 6.60 4.65 6.77

11.82 6.80 4.65 6.98
6.03 6.77 4.65 6.94

15.13 7.07 4.65 7.26
p.20 6.94 4.65 7.11
3.20 6.81 4.65 6.97

11.87 6.98 4.65 7.14
8.84 7.03 4.65 7.19
6.22 7.01 4.65 7.16
6.22 6.99 4.65 7.13
5.83 6.95 4.65 7.09

11.82 7.09 4.65 7.23
5.98 7.06 4.65 7.20
6.12 7.03 4.65 7.17
6.07 7.01 4.65 7.14
6.04 6.99 4.65 7.11
8.92 7.03 4.65 7.16
6.12 7.01 4.65 7.13
5.92 6.99 4.65 7.10
6.22 6.97 4.65 7.08
6.04 6.95 4.65 7.06
9.04 6.99 4.65 7.10
6.22 6.98 4.65 7.08
6.22 6.96 4.65 7.06
9.01 7.00 4.65 7.10
6.00 6.98 4.65 7.08
6.00 6.96 4.65 7.06
6.04 6.95 4.65 7.04
0.39 6.82 4.65 6.91
6.22 6.81 4.65 6.90

-0.02 6.69 4.65 6.77
6.00 6.68 4.65 6.75

11.87 6.77 4.65 6.84
6.07 6.76 4.65 6.83
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TABLE D- lb

SIMULATION WITH RULE 1 - SECOND RUN

fri nXj Sn /n

m
1

=6.60

n 1

2= 7 . 25

nX2

1 1 8.87 8.87 8.87 0.00
2 2 8.80 8.84 8.87 8.80
3 1 0.54 6.07 4.71 8.80
4 2 5.62 5.96 4.71 7.21
5 2 9.04 6.58 4.71 7.82
6 2 8.84 6.96 4.71 8.08
7 2 -0.02 5.96 4.71 6.46
8 2 6.12 5.98 4.71 6.40
9 2 9.01 6.'32 4.71 6.78
10 2 5.92 6.28 4.71 6.67
11 2 8.92 6.52 4.71 6.92
12 2 6.22 6.49 4.71 6.85
13 2 6.07 6.46 4.71 6.78
14 2 6.03 6.43 4.71 6.72
15 2 5.83 6.39 4.71 6.65
16 2 3.20 6.19 4.71 6.40
17 2 6.02 6.18 4.71 6.38
18 2 8.97 6.34 4.71 6.54
19 2 15.13 6.80 4.71 7.05
20 2 11.87 7.05 4.71 7.31
21 2 11.81 7.28 4.71 7.55
22 2 6.00 7.22 4.71 7.47
23 2 5.98 7.17 4.71 7.40
24 2 6.07 7.12 4.71 7.34
25 2 8.86 7.19 4.71 7.41
26 2 0.39 6.93 4.71 7.12
27 2 6.04 6.90 4.71 7.07
28 2 11.82 7.07 4.71 7.26
29 2 0.39 6.84 4.71 7.00
30 2 6.00 6.82 4.71 6.97
31 2 11.82 6.98 4.71 7.13
32 2 6.00 6.95 4.71 7.10
33 2 8.80 7.00 4.71 7.15
34 2 3.20 6.89 4.71 7.03
35 2 5.83 6.86 4.71 6.99
36 2 6.02 6.84 4.71 6.96
37 2 5.62 6.81 4.71 6.93
38 2 3.20 6.71 4.71 6.82
39 2 9.01 6.77 4.71 6.88
40 2 8.97 6.83 4.71 6.94
41 2 6.22 6.81 4.71 6.92
42 2 8.80 6.86 4.71 6.97
43 2 5.62 6.83 4.71 6.93
44 2 6.00 6.81 4.71 6.91
45 2 5.98 6.79 4.71 6.89
46 2 8.86 6.84 4.71 6.93
47 2 , 6.07 6.82 4.71 6.92
48 2 6.12 6.81 4.71 6.90
49 2 t,. 12 6.79 4.71 6.88
50 5.9: 6.78 4.71 6.86
51 8.86 6.82 4.71 6.90
52 k 1 fr.' 6.86 4.71 6.94
53 2 i It 6.95 4.71 7.04
54 2 11.32 7.04 4.71 7.13
55 8.97 7.08 4.71 7.17
56 0.38 6.96 4.71 7.04
57 6.07 p. 94 4.71 7.02
58 2 3.20 .88 4.71 6.95



n,,,..!.

TABLE D-lc
SIMULATION WITH RULE 1.- THIRD RUN

nj %In
1
8.60 At 2a7.25

nTc
1 n 2

1 1

2 2

3 2

4 2

5 2

6 2

7 2

8 2
9 2

10 2

11 2

12 2

13 2

14 2

15 2

16 2

17 2
18 2

19 2

20 2

21 2

22 2

23 2

24 2

25 2

26 2

27 2

28
29
30 2

31 2

32 2

33 2

34 2

35 2

36 2

37 2

38 2

39 2

40 2

41 2

42 2

43 2

44 2

45 2

46 2

47 2

48 2

49 2

50 2

51 2

52 2

53 2

54 2

55 2

56 2

57 2

53 2

3.09
6.12
8.92
8.80
5.62
9.04
8.84

-0.02
6.04
9.01
5.92

11.82
6.22
6.07
6.03
5.83
3.20
6.02
8.97

15.13
11.87
11.81
6.00
5.98
6.07
8.86
0.39
6.00
3.20
9.01
5.62
5.62
6.22
6.07
6.07
6.07
5.83
3.20
6.07
8.80
8.97
6.22
9.01
6.12
8.84
5.98
5.98
6.02
8.92

11.87
5.98
6.00

11.87
9.01
8.80
8.97
3.20

-0.02

3.09
4.61
6.05
6.74
6.51
6.94
7.21
6.30
6.28
6.55
6.49
6.94
6.88
6.82
6.77
6.71
6.51
6.48
6.61
7.04
7.27
7.47
7.41
7.35
7.30
7.36
7.10
7.06
6.93
7.00
6.96
6.91
6.89
6.87
6.85
6.82
6.80
6.70
6.69
6.74
6.79
6.78
6.83
6.82
6.86
6.84
6.82
6.81
6.85
6.95
6.93
6.92
7.01
7.05
7.08
7.11
7.04
6.92

3.09 0.00
3.09 6.12
3.09 7.52
3.09 7.95
3.09 7.37
3.09 7.70
3.09 7.89
3.09 6.76
3.09 6.67
3.09 6.93
3.09 6.83
3.09 7.29
3.09 7.20
3.09 7.11
3.09 7.03
3.09 6.95
3.09 6.72
3.09 6.68
3.09 6.81
3.09 7.25
3.09 7.48
3.09 7.68
3.09 7.61
3.09 7.54
3.09 7.48
3.09 7.53
3.09 7.26
3.09 7.21
3.09 7.07
3.09 7.13
3.09 7.08
3.09 7.04
3.09 7.01
3.09 6.98
3.09 6.96
3.09 6.93
3.09 6.90
3.09 6.80
3.09 6.78
3.09 6.83
3.09 6.89
3.09 6.87
3.09 6.92
3.09 6.90
3.09 6.95
3.09 6. q3
3.09 6.91
3.09 6.89
3.09 6.93
3.09 7.03
3.09 7.01
3.09 6.99
3.09 7.08
3.09 7.12
3.09 7.15
3.09 7.18
3.09 7.11
3.09 6.99
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TABLE D-2a

SIMULATION WITH RULE 7 - FIRST RUN

Set B "I: 3,10,28
ir 5 14 96(12:

tj nXj
Sn

1
08.30

11x1

7.25
2

1122

1 1 3.09 3.09 3.09 0.00

2 2 8.84 5.97 3.09 8.84

3 2 5.98 5.97 3.09 7.41

4 2 9.01 6.73 t. 09 7.95

5 1 5.97 6.58 4.53 7.95

6 2 5.83 6.46 4.53 7.42

7 2 6.07 6.40 4.53 7.15

8 2 5.92 6.34 4.53 6.95

9 2 6.12 6.32 4.53 6.83

10 2 8.92 6.58 4.53 7.09

11 2 8.80 6.78 4.53 7.28

12 2 5.62 6.69 4.53 7.12

13 2 9.04 6.87 4.53 7.29

14 1 8.81 7.01 5.96 7.29

15 2 11.81 7.33 5.96 7.67

16 2 -0.02 6.87 5.96 7.08

17 2 6.04 6.82 5.96 7.00

18 2 6.00 6.77 5.96 6.94

19 2 0.39 6.44 5.96 6.53

20 2 11.82 6.71 5.96 ,3.84

21 2 6.22 6.68 5.96 6.80

22 2 6.07 6.86 5.96 6.77

23 2 6.03 6.63 5.96 6.73

24 2 8.86 6.72 5.96 6.83

25 2 3.20 6.58 5.96 6.67

26 2 6.02 6.56 5.96 6.64

27 2 8.97 6.65 5.96 6.74

28 2 15.13 6.95 5.96 7.07

29 2 11.87 7.12 5.96 7.26

30 2 3.20 6.99 5.96 7.11

31 2 -0.02 6.77 5.96 6.85

32 2 8.86 6.83 5.96 6.92

33 2 -0.02 6.62 5.96 6.69

34 2 5.83 6.60 5.96 6.66

35 2 9.01 6.67 5.96 6.74

36 1 11.82 6.81 7.43 6.74

37 1 5.78 6.78 7.10 6.74

38 1 6.25 6.77 6.96 6.74

39 1 5.67 6.74 6.77 6.74

40 1 6.12 6.73 6.69 6.74

41 2 15.13 6.93 6.69 6.99

42 2 8.97 6.98 6.69 7.05

43 2 3.20 6.89 6.69 6.94

44 2 0.39 6.75 6.69 6.76

45 2 6.07 6.73 6.69 6.74

46 2 8.92 6.78 6.69 6.80

47 2 5.83 6.76 6.69 6.77

48 2 6.03 6.74 6.69 6.75

49 2 6.04 6.73 6.69 6.74

50 2 11.81 6.83 6.69 6.86

51 2 8.92 6.87 6.69 6.90

52 2 8.92 6.91 6.69 6.95

53 2 9.04 6.95 6.69 7.00

54 2 6.02 6.93 6.69 6.93

55 2 -0.02 6.81 6.69 6.83

56 2 0.39 6.69 6.69 6.69

57 1 8.87 6.73 6.94 6.69

58 1 0.54 6.62 6.30 6.69
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TABLE D-2b

SIMULATION WITH RULE 7 - SECOND RUN

Set B

I,: 3,10,28

7r2: 5,14, 36

nX j
Sn /n

m =6.60
1

n511

0207. 25

nTC
2

1 1 8.81 8.81 8.81 0.00

2 2 9.01 8.91 8.81 9.01

3 2 5.83 7.89 8.81 7.42

4 1 11.82 8.87 10.32 7.42

5 1 5.78 8.25 8.81 7.42

6 1 6.25 7.92 8.17 7.42

7 1 3.09 7.23 7.15 7.42

8 2 6.07 7.09 7.15 6.97

9 1 6.12 6.98 6.98 6.97

10 2 5.92 6.87 6.98 6.71

11 1 8.87 7.06 7.25 6.71

12 1 0.54 6.51 6.41 6.71

13 2 6.12 6.48 6.41 6.59

14 1 6.45 8.37 6.59

15 2 8.92 6.81 6.37 6.98

16 2 8.80 6.75 6.37 7.24

17 2 5.62 6.68 6.37 7.04

18 2 9.04 6.82 6.37 7.26

19 2 8.84 6.92 6.37 7.42

20 2 -0.02 6.57 6.37 6.74

21 2 6.04 6.55 6.37 6.69

22 2 5.98 6.52 6.37 6.63

23 2 0.39 6.26 6.37 6.19

24 1 3.31 6.13 6.06 6.19

25 2 11.82 6.36 6.06 6.56

26 2 6.22 6.36 6.06 6.54

27 2 6.07 6.35 6.06 6.51

28 2 6.03 6.34 6.06 6.49

29 2 8.86 6.42 6.06 6.61

30 2 3.20 6.32 6.06 6.44

31 2 6.02 6.31 6.06 6.42

32 2 8.97 6.39 6.06 6.54

33 2 15.13 6.65 6.06 6.91

34 2 11.87 6.81 6.06 7.12

35 2 11.81 0.95 6.06 7.31

36 1 8.86 7.00 6.32 7.31

37 2 6.00 6.98 6.32 7.26

38 2 3.20 6.88 6.32 7.11

39 2 11.82 7.00 6.32 7.28

40 2 0.39 6.84 6.32 7.04

41 2 6.22 6.82 6.32 7.01

42 2 6.12 6.81 6.32 6.98

43 2 11.82 6.92 6.32 7.13

44 2 6.00 6.90 6.32 7.10

45 2 11.87 7.01 6.32 7.24

46 2 5.92 6.99 6.32 7.20

47 2 8.97 7.03 6.32 7.25

48 2 6.03 7.01 6.32 7.22

49 2 6.00 6.99 6.32 7.19

50 2 8.80 7.03 6.32 7.23

51 2 5.83 7.00 6.32 7.19

52 2 6.00 6.99 6.32 7.16

53 2 11.87 7.08 6.32 7.28

54 2 3.20 7.01 6.32 7.18

55 2 8.84 7.04 6.32 7.22

56 2 6.03 7.02 6.32 7.19

57 2 11.82 7.11 6.32 7.29

58 2 6.22 7.09 6.32 7.27



n

TABLE D-2c

SIMULATION WITH RULE 7 - THIRD RUN

Set 13
w 3 10

w 5 14 36
i 28

' 6.1 . 60 µ2=7.25

nXj Sub% nXb nic
2

1 1 5.78 5.78 5.78 0.00
2 2 5.83 5.81 5.78 5.83
3 2 5.92 5.85 5.78 5.88
4 2 6.12 5.92 5.78 5.96
5 1 6.25 5.98 6.02 5.06
6 1 3.09 5.50 5.04 5.96
7 2 8.92 5.99 5.04 6.70
8 2 8.80 8.34 5.04 7.12
9 2 5.62 6.26 5.04 6.87
10 2 9.04 6.54 5.04 7.18
11 2 8.84 6.75 5.04 7.39
12 2 -0.02 6.19 5.04 6.57
13 2 6.04 6.18 5.04 6.51
14 1 6.12 6.17 5.31 6.51
15 2 9.01 6.38 5.31 6.74
16 2 0.39 5.99 5.31 6.21
17 2 11.82 6.33 5.31 6.64
18 2 6.22 6.33 5.31 6.61
19 2 6.07 6.31 5.31 6.58
20 2 6.03 6.30 5.31 6.54
21 2 8.86 6.42 5.31 6.68
22 2 3.20 6.27 .7).31 6.49
23 2 6.02 6.26 3.31 6.46
24 2 8.97 6.38 5.31 6.59
25 2 15.13 6.73 5.31 7.00
26 2 11.87 6.93 5.31 7.22
27 2 11.81 7.11 5.31 7.42
28 2 6.00 7.07 5.31 7.36
29 2 5.98 7.03 5.31. 7.30
30 2 6.07 7.00 5.31 7.26
31 2 11.87 7.16 5.31 7.43
32 2 6.00 7.12 5.31 7.38
33 2 -0.02 6.90 5.31 7.12
34 2 8.92 6.96 5.31 7.18
35 2 5.83 6.93 5.31 7.14
36 1 8.87 6.98 6.03 7.14
37 2 5.98 6.96 6.03 7.10
38 2 6.00 6.93 6.03 7.07
39 2 6.04 6.91 6.03 7.04
40 2 6.02 6.89 6.03 7.01
41 2 5.62 6.86 6.03 6.97
42 2 5.83 6.83 6.03 6.94
43 2 6.04 6.81 6.03 6.92
44 2 8.80 6.86 6.03 6.97
45 2 6.03 6.84 6.03 6.94
46 2 9.01 6.89 6.03 6.99
47 2 8.80 6.93 6.03 7.04
48 2 5.62 6.90 6.03 7.00
49 2 8.97 6.94 T.,. 03 7.05
50 2 11.82 7.04 6.03 7.15
51 2 3.20 6.97 6.03 7.07
52 2 0.39 6.84 6.03 6.93
53 2 8.80 6.88 6.03 6.97
54 2 6.00 6.86 6.03 6.95
55 2 5.98 6.84 6.03 6.93
56 2 6.04 6.83 6.03 6.91
57 2 8.80 6.87 6.03 6.95
58 2 9.04 6.90 6.03 6.99
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TABLE D-3a

SIMULATION WITH MINIMAX RULE - FIRST RUN

w,

Assumed a
lacy 2

*3' 0

n
X

J
S in

A u6.60
1

n511

IA
2117.25

1 1 8.81 8.81 8.81 0.00

2 2 11.82 10.32 8.81 11.82

3 1 5.78 8.81 7.30 11.82

4 2 9.01 8.86 7.30 10.42

5 1 6.23 8.33 6.94 10.42

6 2 5.98 7.94 6.94 8.94

7 1 11.81 8.50 8.16 8.94

8 2 6.07 8.19 8.16 8.22

9 1 8.81 8.26 8.29 8.22

10 2 15.13 8.95 8.29 9.61

11 1 11.82 9.21 8.88 9.61

12 2 6.22 8.96 8.88 9.04

13 1 11.77 9.18 9.29 9.04

14 2 3.20 8.75 9.29 8.21

15 1 3.34 8.39 8.55 8.21

16 2 8.02 8.42 8.55 8.30

17 1 3.23 8.12 7.96 8.30

18 2 6.04 8.00 7.96 8.05

19 1 8.74 8.04 8.04 8.05

20 2 6.02 7.94 8.04 7.85

21 1 8.71 7.98 8.10 7.85

22 2 6.12 7.89 8.10 7.69

23 1 8.79 7.93 8.16 7.69

24 2 9.04 7.98 8.16 7.80

25 1 3.09 7.78 7.77 7.80

26 2 5.83 7.71 7.77 7.65

27 1 0.54 7.44 7.25 7.85

28 2 8.80 7.49 7.25 7.73

29 1 5.97 7.44 7.17 7.73

30 2 11.81 7.59 7.17 8.Q1

31 1 5.76 7.53 7.08 8.01

32 2 5.62 7.47 7.98 7.86

33 1 6.25 7.43 7.06 7.86

34 2 -0.02 7.21 7.03 7.39

35 1 8.81 7.26 7.13 7.39

36 2 8.86 7.30 7.15 7.47

37 1 5.79 7.26 7.06 7.47

38 2 8.84 7.30 7.06 7.55

39 1 5.78 7.26 7.00 7.55

40 2 6.03 7.23 7.00 7.47

41 1 6.23 7.21 6.96 7.47

42 2 11.87 7.32 6.96 7.68

43* 2 5.92 7.29 6.96 7.60

44 2 0.39 7.13 6.96 7.29

45 2 6.07 7.11 6.96 7.24

46 2 8.97 7.15 6.96 7.31

47 2 6.00 7.12 6.96 7.26

48 2 8.86 7.16 6.96 7.32

49 2 5.98 7.14 6.96 7.27

50 2 5.62 7.11 6.96 7.21

51 2 5.92 7.08 6.96 7.17

52 2 3.20 7.01 6.96 7.04

53 2 8.86 7.04 6.96 7.10

54 2 5.83 7.02 6.96 7.06

55 2 6.00 7.00 6.96 7.03

56 2 6.22 6.99 6.96 7.01

57 2 9.04 7.02 6.96 7.06

58 2 3.20 6.96 6.96 6.96
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TABLE D-3b

SIMULATION WITH MINIMAX RULE - SECOND R!TN

Assumed alma 1E3. 0

aXj
S
n
in

141 1.
6 60.

n 1

p
2
is 7.25

n22

1 1 6.23 6.23 6.23 0.00

2 2 5.98 6.11 6.23 5.98

3 1 11.81 8.01 9.02 5.98

4 2 6.07 7.53 9.02 6.03

5 1 8.81 7.78 8.95 6.03

8 2 15.13 9.01 8.95 9.08

7 1 11.82 9.41 9.67 9.06

8 2 6.22 9.01 9.67 8.35

9 1 11.77 9.32 10.09 8.35

10 2 3.20 8.71 10.09 7.32

11* 1 3.34 8.22 8.97 7.32

12 1 3.23 7.81 8.15 7.32

13 1 8.74 7.88 8.22 7.32

14 1 8.71 7.94 8.28 7.32

15 1 8.79 7.99 8.33 7.32

16 1 3.09 7.69 7.85 7.32

17 1 8.81 7.75 7.93 7.32

18 1 5.97 7.66 7.78 7.32

19 1 5.76 7.56 7.64 7.32

20 1 6.25 7.49 7.55 7.32

21 1 8.81 7.55 7.63 7.32

22 1 5.79 7.47 7.52 7.32

23 1 5.78 7.40 7.42 7.32

24 1 6.23 7.35 7.36 7.32

25 1 3.31 7.19 7.16 7.32

26 1 5.98 7.14 7.10 7.32

27 1 3.08 6.99 6.92 7.32

23 1 3.11 6.86 6.75 7.32

29 1 8.72 6.92 6.84 7.32

30 1 5.67 6.88 6.79 7.32

31 1 2.77 6.75 6.63 7.32

32 1 8.86 6.81 6.72 7.32

33 1 5.78 6.78 6.68 7.32

34 1 8.74 6.84 6.76 7.32

35 1 6.12 6.82 6.73 7.32

36 1 0.54 6.64 6.53 7.32

37 1 8.87 6.70 6.61 7.32

38 1 11.82 6.84 6.77 7.32

39 1 3.11 6.74 6.66 7.32

40 1 8.74 6.79 6.72 7.32

41 1 8.74 6.84 6.77 7.32

42 1 8.74 6.89 6.83 7.32

43 1 3.09 6.80 6.73 7.32

41 1 8.74 6.84 6.78 7.32

41 1 2.77 6.75 6.68 7.32

46 1 5.97 6.74 6.66 7.32

47 1 5.79 6.7k 6.64 7.32

48 1 3.34 6.65 6.57 7.32

49 1 5.97 6.63 6.55 7.32

50 1 3.08 6.56 6.48 7.32

51 1 11.82 6.66 6.59 7.32

52 1 5.79 6.65 6.58 7.32

53 1 6.23 6.64 6.57 7.32

54 1 3.08 6.57 6.50 7.32

55 1 8.74 6.61 6.54 7.32

56 1 3.31 6.55 6.48 7.32

57 1 6.23 6.55 6.47 7.32

58 1 8.74 6.59 6.52 7.32
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TABLE D-3c

SIMULATION WITH MINIMAX RULE - THIRD RUN

n

Assumed a1 °2=3.0

ff,
/121 j

S
n
/n

p
1
=6.60

n i

p
2
a7.25

n

1 1 8.81 8.81 8.81 0.00

2 2 15.13 11.97 8.81 15.13

3 1 11.82 11.92 10.32 15.13

4 2 6.22 10.50 10.32 10.68

5 1 11.77 10.75 10.80 10.68

5 2 3.20 9.50 10.80 8.19

7 1 3.34 8.62 8.94 8.19

8 2 6.07 8.30 8.94 7.66

9 1 3.23 7.74 7.80 7.68

10 2 8.04 7.57 7::: 7.34

11 1 8.74 7.67 7.86 7.34

12 2 6.02 7.54 7.88 7.12

13 1 8.71 7.63 8.06 7.12

14 2 6.12 7.52 8.06 6.98

15 1 8.79 7.61 8.18 6.98

16 2 9.04 7.70 8.16 7.23

17 1 3.09 7.42 7.59 7.23

18 2 5.83 7.34 7.59 7.08

19 1 11.81 7.57 8.02 7.08

20 2 8.80 7.63 8.02 7.25

21 1 5.97 7.55 7.83 7.25

22 2 9.01 7.62 7.83 7.41

23 1 5.76 7.54 7.66 7.41

24 2 5.62 7.46 7.66 7.26

25 1 6.25 7.41 7.55 7.26

26 2 -0.02 7.13 7.55 6.70

27 1 8.81 7.19 7.64 6.70

28 2 8.86 7.25 7.64 6.86

'29 1 5.79 7.20 7.52 6.86

30 2 5.98 7.16 7.52
::::

31 1 5.78 7,11 7.41

32 2 11.82 7.26 7.41 7.11

33 1 6.23 7.23 7.34 7.11

34 2 11.87 7.37 7.34 7.39

35 1 3.31 7.25 7.12 7.39

36 2 5.92 7.21 7.12 7.31

37 1 5.98 7.18 7.06 7.31

38 2 0.39 7.00 7.06 6.95

39 1 3.08 6.90 6.86 6.95

40 2 6.07 6.88 6.88 6.90

41 1 3.11 6.79 6.68 6.90

42 2 8.97 6.84 6.68 7.00

43 1 8.72 6.89 6.77 7.00

44 2 6.00 6.87 6.77 6.96

45 1 5.67 6.84 6.73 6.96

46 2 6.33 6.82 6.73 6.92

47 1 2.77 6.74 6.56 6.92

48 2 11.81 6.84 6.56 7.12

49* 2 8.84 6.88 6.56 7.19

50 2 8.92 6.92 6.56 7.26

51 2 6.07 6.91 6.56 7.21

52 2 6.02 6.89 6.56 7.17

53 2 -0.02 6.76 6.56 6.92

54 2 6.02 6.75 6.56 6.88

55 2 0.39 6.63 6.56 6.68

56 2 6.04 6.62 6.56 6.66

57 2 9.04 6.66 6.56 6.74

58 2 6.03 6.65 6.56 6.71
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TABLE D-4a

SIMULATION WITH BACKWARDS INDUCTION RULE - FIRST RUN

Assumed also2
3.0

nXj

*Indicates observation from nb

Me 6.60

%in n21

027. 25

n51
2

1 1 6.23 6.23 8.23 0.00

2 2 5.98 6.11 8.23 5.98

3 1 11.81 8.01 9.02 5.98

4 1 8.81 8.21 8.95 5.98

5 1 11.82 8.93 9.67 5.98

6 1 11.77 9.41 10.09 5.98

7 1 3.34 8.54 8.97 5.98

8 1 3.23 7.88 8.15 5.98

9 1 8.74 7.97 8.22 5.98

10 1 8.71 8.05 8.28 5.98

11 1 8.79 8.12 8.33 5.98

12 1 3.09 7.70 7.85 5.98

13 1 8.81 7.78 7.93 5.98

14 1 5.97 7.65 7.78 5.98

15 1 5.76 7.53 7.64 5.98

16 1 6.25 7.45 7.55 5.98

17 1 8.81 7.53 7.63 5.98

18 1 5.79 7.43 7.52 5.98

19 1 5.78 7.35 7.42 5.98

20 1 6.23 7.29 7.36 5.98

21 1 3.31 7.10 7.16 5.98

22 2
* 6.07 7.05 7.16 6.03

23 1 5.98 7.01 7.10 6.03

24 1 3.08 6.84 6.92 6.03

25 1 3.11 6.70 6.75 6.03

26 1 8.72 6.77 6.84 6.03

27 1 5.67 6.73 6.79 6.03

28 1 2.77 6.59 6.63 6.03

29 2* 15.13 6.89 6.63 9.06

30 2 6.22 6.86 6.63 8.35

31 2 3.20 6.75 6.63 7.32

32 2 8.92 8.81 6.63 7.59

33 2 6.04 6.79 6.83 7.37

34 2 6.02 6.77 6.63 7.20

35 2 6.12 6.75 6.63 7.08

36 2 9.04 8.81 6.63 7.28

37 2 5.83 6.79 6.63 7.15

38 2 8.80 6.84 6.63 7.29

39 2 9.01 6.90 6.63 7.42

40 2 5.62 6.86 6.63 7.29

41 2 -0.02 6.70 6.63 6.80

42 2 8.86 6.75 6.63 6.93

43 2 8.64 6.80 6.63 7.04

44 2 11.82 6.91 6.83 7.31

45 2 11.87 7.02 6.63 7.55

48 2 5.92 7.00 6.63 7.47

47 2 0.39 6.86 6.63 7.13

48 2 6.07 6.84 6.63 7.08

49 2 8.97 6.88 6.63 7.17

50 2 6.00 6.87 6.63 7.12

51 2 6.03 6.85 6.63 7.07

52 2 11.81 6.95 6.63 7.26

53 2 15.13 7.10 6.63 7.55

54 2 11 87 7.19 6.63 7.70

55 2 6.04 7.17 6.63 7.65

56 2 6.92 7.20 6.63 7.69

57 2 8.92 7.23 6.63 7.73

58 2 6.12 7.21 6.63 7.68



TABLE D-4b
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SIMULATION WITH BACKWARDS INDUCTION RULE - SECOND RUN

w,

Assumed alloy 3.0

nXj

*Indicates observation from nb

6.60
1

S in nTc
1

u7.25

n3E2

1 1 6.23 6.23 8.23 0.00
2 2 6.07 6.15 6.23 8.07
3 1 3.34 5.22 4.79 6.07
4 2 6.12 5.44 4.79 6.10
5 2 5.62 5.48 4.79 5.94
6 2 5.98 5.56 4.79 5.95
7

8
2
2

somftb.--.........14-...
-0. 2

5.63
4.92

4.79
4.79

5.97
4.97

9 1* 3.31 4.75 4.30 4.97
10 1

* 3.23 4.59 4.03 4.97
11 2 8.92 4.99 4.03 5.53
12 2 8.80 5.31 4.03 5.94
13 2 9.01 5.59 4.03 6.28
14 2 15.13 6.27 4.03 7.17
15 2 8.86 6.45 4.03 7.32
16 2 6.22 6.43 4.03 7.23
17 2 3.20 6.24 4.03 6.92
18 2 0.39 5.92 4.03 6.46
19 2 6.02 5.92 4.03 6.43
20 2 5.92 5.92 4.03 6.40
21 2 6.07 5.93 4.03 6.38
22 2 11.82 6.20 4.03 6.68
23 2 6.04 6.19 4.03 6.65
24 2 9.04 6.31 4.03 6.77
25 2 8.97 6.42 4.03 6.87
26
27

2
2

11.87
5.83

6.63
6.60

4.03
4.03

7.10
7.04

28 2 8.84 6.66 4.03 7.12
29
30

2
2

11.81
6.00

6.86
6.83

4.03
4.03

7.31
7.26

31 2 6.22 6.81 4.03 7.22
32 2 11.82 6.96 4.03 7.38
33 2 0.39 6.77 4.03 7.14
34 2 6.00 6.74 4.03 7.10
35 2 -0.02 6.55 4.03 6.87
36 2 15.13 6.79 4.03 7.13
37 2 6.03 6.77 4.03 7.10
38 2 11.82 6.90 4.03 7.24
39 2 -0.02 6.72 4.03 7.03
40 2 6.12 6.71 4.03 7.01
41 2 5.98 6.69 4.03 6.98
42 2 3.20 6.61 4.03 6.88
43 2 8.97 6.66 4.03 6.93
44 2 11.82 6.78 4.03 7:05
45 2 8.84 6.83 4.03 7.10
46 2 15.13 7.01 4.03 7.29
47
48

2
2

11.87
6.02

7.11
7.09

4.03
4.03

7.40
7.37

49 2 6.12 7.07 4.03 7.34
50 2 6.04 7.05 4.03 7.31
51 2 6.03 7.03 4.03 7.28
52 2 15.13 7.18 4.03 7.45
53 2 6.07 7.16 4.03 7.42
54 2 6.02 7.14 4.03 7.39
55 2 21. 82 7.23 4.03 7.48
56 2 0.39 7.10 4.03 7.34
57 2 6.00 7.09 4.03 7.32
58 2 5.92 7.07 4.03 7.29
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TABLE D-4c

SIMULATION WITH BACKWARDS INDUCTION RULE - THIRD RUN

nXj Snip
aTC1

2
7.25

n512
4

1 1 11.81 11.81 11.81 0.00

2 2 8.80 10.31 11.81 8.80

3 1 3.23 7.95 7.52 8.80

4 2 11.87 8.93 7.52 10.34

5 2 5.98 8.34 7.52 8.89

6 2 6.07 7.96 7.52 8.18

7 2 15.13 8.99 7.52 9.57

8 2 6.22 8.64 7.52 9.02

9 2 3.20 8.04 7.52 8.19

10 2 8.92 8.13 7.52 8.28

11 2 6.04 7.94 7.52 8.03

12 1* 6.23 7.80 7.09 8.03

13 2 6.02 7.66 7.09 7.83

14 2 6.12 7.55 7.09 7.67

15 2 9.04 7.65 7.09 7.79

16 2 5.83 7.54 7.09 7.64

17 2 6.03 7.45 7.09 7.52

18 1
* 0.54 7.06 5.46 7.52

19 2 9.01 7.17 5.46 7.62

20 2 5.62 7.09 5.46 7.50

21 2 -0.02 6.75 5.46 7.06

22 2 8.86 6.85 5.46 7.18

23 2 8.84 6.93 5.46 7.25

24 2 11.82 7.14 5.46 7.47

25 2 11.81 7.33 5.46 7.68

26 2 5.92 7.27 5.46 7.60

27 2 0.39 7.02 5.46 7.29

28 2 6.07 6.98 5.46 7.24

29 2 8.97 7.05 5.46 7.31

30 2 6.00 7.02 5.46 7.26

31 2 3.20 6.89 5.46 7.11

32 2 8.07 6.87 5.46 7.07

33 2 6.03 6.84 5.46 7.03

34 2 5.98 6.82 5.46 7.00

35 2 5.98 6.79 5.46 6.97

36 2 6.02 6.77 5.46 6.94

37 2 11.81 6.91 5.46 7.08

38 2 6.12 6.89 5.46 7.06

39 2 6.12 6.87 5.46 7.03

40
41

2

2

11.82
6.12

6.99
6.97

5.46
5.46

7.16
7.14

42 2 0.39 6.81 5.46 6.96

43 2 8.80 6.86 5.48 7.01

44 2 15.13 7.05 5.46 7.21

45 2 5.62 7.02 5.46 7.17

46 2 8.86 7.06 5.46 7.21

47 2 5.98 7.03 5.46 7.18

48 2 5.62 7.01 5.46 7.15

49 2 5.92 6.98 5.48 7.12

50 2 3.20 6.91 5.46 7.03

51 2 8.86 6.95 5.46 7.07

52 2 5.83 6.92 5.46 7.05

53 2 6.00 6.91 5.46 7.03

54 2 6.22 6.89 5.46 7.01

55 2 9.04 6.9° 5.46 7.05

56 2 3.20 6.87 5.46 6.98

57 2 6.07 6.85 5.46 6.96

58 2 6.00 6.84 5.46 6.94


